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Abstract: In this study, we examine the relevance of scheduling production lots effectively 

for producing medium- to high-volume goods that demand lengthy setup times. Instead of 

producing a full lot as is customary, lot splitting techniques separate a production lot into 

numerous smaller sub-lots, allowing each sub-lot to be "transferred" as soon as a step of 

production is finished. As a result, "transfer lots" drastically shorten lead times and decrease 

work-in-progress (WIP) inventory. However, it is very challenging to model, analyse, and 

govern transfer lots mathematically. In this research, a novel formulation of integer 

programming with separable structure is presented for job shop scheduling with fixed-size 

transfer lots. a solution approach built on the complementary concepts of Lagrangian 

relaxation (LR), backward dynamic programming (BDP), and heuristics is developed. 

Through explicit modeling of lot dynamics, transfer lots are handled on standard machines, 

machines with setups, and machines requiring all transfer lots within a production lot to be 

processed simultaneously. With the introduction of “sub-states” and the derivation of DP 

functional equations considering transfer lot dynamics, the standard BDP is extended to solve 

the lot-level sub problems. The recently developed “time step reduction technique” is also 

incorporated for increased efficiency. It implicitly establishes two time scales to reduce 

computational requirements without much loss of modeling accuracy and scheduling 

performance, thus enabling resolution of long horizon problems within controllable 

computational requirements. The method has been implemented using object-oriented 

programming language C++, and numerical testing results show that high quality schedules 

involving transfer lots are efficiently generated to achieve on-time delivery of products with 

low WIP inventory. 

Keywords: Job Shop Scheduling; Transfer Lots; Optimization; Lagrangian Relaxation; 

Dynamic Programming. 

 
 

1 INTRODUCTION 
 

Scheduling of production lots is of great importance 

for manufacturing medium to high volume products 

with significant setups. In traditional production, a 

lot is indivisible, and individual pieces must wait 

for the completion of all the pieces within the lot 

before moving on to the next stage of operation. 

This often results in long lead times, low machine 

utilization, and high work-in-process (WIP) 

inventory 
[1]

. In recent years, lot splitting techniques 

have been used to divide a production lot (briefly 

a „lot‟) into multiple smaller sub-lots so that each 

sub-lot can be individually “transferred” from one 

stage of operation to the next as soon as that sub-lot 

has been completed. Lot splitting techniques thus 

allow individual “transfer lots” to be concurrently 

processed at several production stages, which 

mailto:%20e-mail:%20subratdas@thenalanda.com
mailto:nayanjyoti@thenalanda.com


International Journal of Engineering Sciences Paradigms and Researches (IJESPR)  

Volume 46, Issue: Special Issue of December 2017  

An Indexed, Referred and Peer Reviewed Journal with ISSN (Online): 2319-6564  

www.ijesonline.com 

157 

 

reduces manufacturing lead times, lowers WIP 

inventory levels, and improves product delivery times 
[2-4]

. 

Most lot splitting techniques in the literature are based 

on heuristics. For example, two- and three- machine 

flow shop problems with equal-size transfer lots and 

a make span objective function were solved by using 

a modified Johnson‟s algorithm where each transfer 

lot was treated as an independent unit in Vickson 

and Alfredsson 
[5]

. Heuristics for flow shop problems 

with three or more machines were presented in 

Trietsch and Baker 
[1]

. A heuristic method for the 

integrated determination of transfer lot sizes and 

production schedules for a two-stage flow shop with 

a maximum flow time objective function was 

presented   in   Cetinkaya 
[6]

. A simulation model for 

scheduling job shops with lot splitting using 

dispatching rules and a mean flow time objective 

function was presented in Jacobs and Bragg 
[7]

. A 

heuristic algorithm is developed to minimize the 

make span for three- stage production processes in 

Glass et al. 
[8]

. These heuristic approaches usually 

generate feasible schedules quickly, and 

demonstrate the benefits of transfer lots toward 

reducing lead times and lowering WIP inventory. 

However, it is difficult to evaluate the quality of the 

schedules generated, and these heuristics do not 

provide a systematic way for iterative improvement 

of the schedules. Recently, an optimization-based 

method has shown promise in scheduling transfer 

lots on standard machines without setups 
[9]

. The 

method, however, cannot handle problems with long 

planning horizon or machine setups. There are also 

situations where all transfer lots within a production 

lot are required to be processed simultaneously. An 

example is the outsourcing of the entire lot, say, for 

heat treatment. Extension of the method is therefore 

needed to solve practical problems involving 

transfer lots. 

 
Building on the above results of Liu and Luh 

[9]
, 

a novel integer programming formulation with 

separable structure for scheduling job shops with 

fixed-size transfer lots is presented in Section 

2. In the formulation, transfer lots are handled 

on standard machines, machines   with   setups, 

and machines requiring all transfer lots within a 

production lot to be processed simultaneously. 

The formulation is “separable” in the sense that 

the objective function and all “coupling” machine 

capacity constraints are additive in terms of the 

basic decision variables at the lot level. A solution 

methodology based on a synergistic combination 

of Lagrangian relaxation (LR), backward dynamic 

programming (BDP), and heuristics is developed 

in Section 3. Through the explicit modeling of lot 

dynamics, the introduction of “sub-states,” and 

the derivation of dynamic programming equations 

considering transfer lot dynamics, the standard BDP 

is extended to solve lot-level sub problems within 

the Lagrangian relaxation framework. The recently 

developed “time step reduction technique” is also 

incorporated. It implicitly establishes two time 

scales to reduce computational requirements without 

much loss of modeling accuracy and scheduling 

performance, which enables the resolution of long 

horizon problems within reasonable computational 

requirements. Numerical testing results presented 

in Section 4 show that high quality schedules with 

transfer lots are generated in a timely fashion for 

on-time delivery with low WIP inventory. 

 

 
 

2 PROBLEM FORMULATION 
 

The following formulation for scheduling job 

shops with transfer lots is built on the previous 

work presented in Luh and Hoitomt 
[10]

 and Liu and 

Luh 
[9]

. Instead of treating individual transfer lots 

as independent scheduling units as in Vickson and 

Alfredsson 
[5]

, only each production lot is treated 

as a scheduling unit, with operation beginning and 

completion times as decision variables. The key is 

to properly describe transfer lot dynamics using 

production lot variables only. The preliminaries that 

lead to the formulation are presented first, using a 

list of symbols given in Appendix C. 

 

 Notation and General Description 

 
 Time Step Reduction 

In view of the long planning horizon under 

consideration relative to the time resolution 

required (e.g., 6 months vs. six minutes), the “time 

step reduction technique” originally developed in 

Luh et al. 
[1]

 is extended for scheduling transfer 

lots. The time horizon is divided into T “resolution 

increments” indexed by t, 0  t  T-1, and R 

consecutive resolution increments are aggregated 

into an “enumeration step” indexed by k, 0  k  

K, with T = RK. For example, a 500 hour horizon 

can be divided into 500 one-hour resolution 

increments, and 50 ten-hour enumeration steps by 

aggregating 10 one-hour resolution increments in an 

enumeration step. Then an operation requiring, say, 

16 hours on a machine is represented as occupying 

a full ten-hour enumeration step and 60% of the 

next enumeration step. Thus by using fractional 

but quantized machine utilization, multiple “short” 

operations are allowed to “share” a machine within 
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lj 

s 

an enumeration step, and a part with several “short” 

operations is allowed to flow through the machines 

within a single enumeration step. Most input data 

2.1.4 Setups 

If operation (l, j) has a setup requirement on a 

machine, it cannot be started until the machine 

are specified in terms of resolution increments has been setup. Assume that the setup time ljh    in 
except when stated otherwise. Since the complexity 

of the method depends significantly on the number 
resolution increments for operation (l, j) on machine 

type h is known and is sequence independent (i.e., 
of   enumeration   steps,   this   technique   reduces s 

ljh does not depend on what was processed earlier 
computational effort in solving the “dual problem” 

through appropriate selection of the number of 

resolution increments R within an enumeration 

step. 

 

2.1.2 Machines 

In a job shop, machines may have different 

processing   capabilities;   e.g.,   processing   speed 

or setup requirements. Machines with identical 

processing capability from the scheduling point of 

view are grouped as a “machine type,” and all the 

on that machine). Then once the machine is setup 

for operation (l, j), a transfer lot can be started 

on the machine as soon as it has arrived from its 

predecessor operation (l, j-1) and the machine has 

finished the predecessor transfer lot if it exists. 

Also, as stated earlier, the machine cannot process 

anything else until all the transfer lots in lot l are 

finished. 

 
2.1.5 Decision Variables 
The beginning and completion times of operation 

machine types form a set denoted by H. (l, j) in resolution increments are denoted by b
lj 

2.1.3 Lots and Transfer Lots 

Suppose that there are L production lots, indexed 
by l = 0, 1, ..., L-1, each consisting of a number 

and clj , respectively, and are the major decision 

variables. To ensure schedule acceptability, blj is 

constrained by its given earliest beginning time b
e
 

and the latest beginning time b
l
 , i.e., b

e
  b  b

l
 

of products of the same type. For simplicity of lj lj lj lj 

presentation, a production lot will be referred to as ; similarly, c   satisfies c
e
  c  c

l
 . These earliest 

lj lj lj lj 

a lot hereafter when there is no confusion. Different 

lots may have different product types, due dates, 

or arrival dates. For feasibility, a long enough 

planning horizon T is selected that is sufficient for 

the completion of all L lots. 

 
A production lot, say lot l, consists of Nl fixed 

and equal-size transfer lots. It has to go through a 

sequence of operations, indexed by j = 0, 1, ..., J l 

-1, according to a specified process plan. Operation 

j of lot l, denoted as (l, j), has to be performed by a 

machine belonging to an eligible machine type h  

Hlj , h = 0, 1, …, | Hlj | -1. Once started, the entire lot 

(i.e., all the transfer lots of the production lot) must 

be finished on the machine before anything else 

can be processed by the machine. This assumption 

applies to various situations, e.g., when setup costs 

are significant or when mixed transfer lots at a 

machine are difficult to manage because of operator 

and latest beginning and completion times are 

determined based on factors such as the arrivals 

of raw materials, the desire to minimize work- in-

process inventory, and due dates promised to 

customers. 

 

 Machine Capacity Constraints and Lot 

Dynamics 

 
 Machine Capacity Constraints 

The number of machines available per type at each 

resolution increment is a given integer. The average 

number of type h machines available at enumeration 

step k, denoted as Mkh, is thus a quantized fraction. 

The machine capacity constraints state that the total 

number of lots being processed should not exceed 

the number of machines available at each time 

period: 

 
L-1  Jl 1 

or shop-floor tracking system requirements. Let tljh  
ljkh   

 M
k h (1) 

denote the processing time in resolution increments l=0   j 0 

per transfer lot for operation (l, j) on a machine In the above,  is the fraction of time that 
type h. Let s

lj represent the required “time-out” ljkh 

in resolution increments between (l, j) and (l, j+1), 

representing processes not explicitly modeled in the 

problem formulation, such as transfer time, cooling 

down or curing time. It is assumed that the number 

of transfer lots, Nl , the transfer lot processing time 

tljh , and “time-out”  slj are given. 

operation (l, j) of production lot l is assigned to 

machine type h at enumeration step k. It is also 

assumed that the capacity of machine types where 

all transfer lots of a lot must be simultaneously 

processed is large enough to accommodate the 

entire lot. 

 

The dynamics of transfer lots is described through 

t 

t 
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l   l l    l 

operation   precedence   constraints,   processing 

time requirements, and the setup requirements as 

follows. 

 
 Operation Precedence Constraints 

Assume that a machine of type h has been setup for 

times can be accurately described by (2) and (4). 

 
If operation (l, j) is performed on a machine that 

processes all transfer lots within a lot simultaneously, 

then all the transfer lots have the same beginning 

and completion times. The completion time thus 

(l, j+1) of lot l so that this operation can be started. 

The operation   precedence   constraints   require 

that operation (l, j+1) cannot be started until the 

predecessor operation (l, j) of the first transfer lot 

has been completed, i.e., 

depends only on the beginning time 

transfer lot processing time tljh , i.e., 

clj   blj  tljh 1 

b
lj and the 

 

 
(5) 

 

b
lj 
 t

ljh 
 s

lj 
 b

l,j 1 (2) 2.2.4 Setup Requirements 

For an operation (l, j) requiring setups, although the 

Where s
lj is any required “time-out?” If the first transfer lot has to wait for the completion of its 

operation (l, j) is performed on machines that 

require simultaneous processing of all transfer lots 

within a lot, then the constraints become that (l, 

j+1) cannot be started until the last transfer lot has 

predecessor operation (l, j-1), the machine‟s setup 

can be started earlier. The actual setup beginning 

time for operation (l, j), denoted by bl

j , is 

completed operation (l, j), i.e., b  b  t 
s
 (6) 

lj lj ljh 

c
lj 
 s

lj  
1  b

l, j 1 (3) 
 

Assuming that the machine is available for setup 
at bl


j . Therefore once operation beginning time blj 

The presence of “1” in (3) is due to our convention 

that when an operation begins in a period, it starts 

at the beginning of that period. However when it 

ends in a period, it finishes at the end of that period, 

thus occupying the entire period in both cases. This 

convention is often followed in practice. 

 

2.2.3 Operation Processing Time Requirements 

Each   operation   beginning   time    blj     may   be 

is known, the setup beginning time can be readily 

computed, and setups can be embedded within lot 

dynamics without introducing additional variables. 

 
 Objective Function 

 

The objective of scheduling is to ensure on-time 

product delivery with low WIP inventory. This is 

represented by minimizing the sum of weighted 
associated   with   multiple   completion   times c

lj quadratic penalties for violating lot due dates and 
since the completion time depends not only on 

the operation beginning time and the transfer lot 

processing time tljh , but also on the lengths of 

intermittent idling times. Despite the availability 

of a machine, intermittent idling between two 

for releasing raw materials too early: 

 

J  wT 
2
   E 

2
  

l 

 

 

(7) 

transfer lots may exist since the next transfer lot In the above, Tl 
is the tardiness of lot l defined as 

may still be in processing at the previous stage if the time the lot completion time cl (the completion 

the processing time there is longer than the current time of the last operation of the last transfer lot) 

one [1, 9]. The lengths of intermittent idling times 

depend on several factors, nevertheless, it is clear 
exceeds the given lot due date dl    in enumeration 
steps,    i.e., T  max 

 
0, 
 c1   

 d1   
.   The   lot 

 
  that if there is no intermittent idling between b

lj 
l    

 R 
 

 R  


and clj , then  clj   blj  Nl  tljh 1;  otherwise   clj 

 
earliness, El , is similarly defined as the excess 

= cl ,j 1  sl , j 1  tljh . Consequently,   the   operation 

completion time clj is given by 

 
 

of lot‟s earliest beginning time bl     over the lot‟s 

scheduled beginning time bl (the beginning time 
of the first operation of the first transfer lot), i.e., 

 blj  Nl  tljh 1,       b     b  
clj  max 

 
 (4) E  max  0, 

 1 
   . The parameters 

 
 

w and 
 c

l,j 1 
 s

l, j 1 
 t

ljh 
l
      R  

 R   
l 

 

The significance of (4) is that, although the 

movement of individual transfer lots is not explicitly 

modeled, production lot beginning and completion 

 

l are weights associated with the earliness and 

tardiness penalties of lot l. The above penalties 

define a time window in which the lot can be 

scheduled without penalty. 
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

   

J   wT   E  

L b , c   (9) 

ljh 

The key decision variables are operation beginning Where mkh is   a   non-negative   slack   variable 

times   { blj }   and   completion   times   { clj }   for satisfying 0  mkh  Mkh . With the multipliers 
individual production lots. Once these variables 

are determined, transfer lot beginning times and 

completion times can be derived as presented in 

Appendix A. 

 

3 SOLUTION METHODOLOGY 

given, the “relaxed problem” is to minimize the 

Lagrangian J
+
 subject to operation precedence 

constraints, processing time requirements, and setup 

requirements (2) to (6). After regrouping relevant 

terms within J
+
, the problem is decomposed into 

individually solvable lot sub problems as follows: 

min L 
b ,c 

, with L  wT 
2
   E 

2
  Jl 1 

L 
b , c  , 

Lagrangian   relaxation   (LR)   is   a   mathematical 
programming technique for constrained 

optimization. Similar to the pricing concept of 

a market economy, the method replaces “hard” 

lj  lj 
 

 
 

and 

 
c 

l l   l l    l  lj 
j 0 

lj   lj 

coupling constraints (i.e., machine capacity 

constraints in this study) by the payment of certain 

“prices” (i.e., Lagrange multipliers) based on 

lj 

lj lj       lj  
~
th 

t blj t
s
 

the “demand” for a machine for the use of that To simplify the derivation, ~
th is introduced to 

machine at each time unit. The original problem represent the multiplier for machine type h at 
can thus be decomposed into many smaller and 

easier lot-level sub problems. Backward dynamic resolution increment t, i.e., ~  


kh 
th 

R
 

with k  
 t 


 R 

programming is then used to solve these lot-level 

sub problems where other constraints are enforced. 

The multipliers are then adjusted after these sub 

problems are solved, based on the degrees of 

constraint violation following again the market 

economy mechanism. Sub problems are then re- 

. The sub problems { Ll } are subject to (2) to (6). 

The decision variables are operation beginning 

times { blj } and completion times { clj } of lot l. 

Since   Llj  blj 
, c

lj    is  the  cost  for  using  a  type  h 

solved based on the new set of multipliers, and machine between times b
lj and clj , the lot sub 

the process repeats. In mathematical terms, the 

“dual function” is maximized in this multiplier 

updating process where the values of the dual 

function are lower bounds to the optimal feasible 

cost. Since coupling constraints have been relaxed 

by the multipliers, the solutions of individual sub 

problems, when put together, may not constitute a 

feasible schedule. A simple heuristic is therefore 

used towards the end of this multiplier updating 

process to provide feasible schedules satisfying all 

constraints. The quality of the feasible schedules 

can be quantitatively evaluated by comparing 

their costs with the largest lower bound provided 

by the dual function. The development of the BDP 

technique is complicated, and will be one of the 

major topics of our focus in this section. 

 
 The Lagrangian Relaxation Framework 

 
Machine capacity constraints (1) are first “relaxed” 

by using Lagrange multipliers { kh } in enumeration 

steps and the Lagrangian is formed as: 

 
L 1 

 2 2 

l   l l    l 

problem thus reflects the balance between the 

machine utilization cost and tardiness as well as 

earliness penalties. 

 

 Backward Dynamic Programming (BDP) for 

Lot Sub problems: Preliminaries 

 
In view of the complications caused by the 

existence of multiple completion times associated 

with a given beginning time, the BDP algorithm 

developed in Luh et al. 
[11]

 must be extended to 

solve lot sub problems. In the following, the 

generic DP equations are first presented. Several 

key parameters are then determined, including the 

number of multiple operation completion times 

associated with each beginning time, the earliest 

beginning and completion times, and the latest 

beginning and completion times. These parameters 

help reduce BDP computational requirements. In 

addition, “sub-states” are introduced to efficiently 

carry out the DP procedure. 

 
 Backward Dynamic Programming Equations 

Each lot sub problem has a number of DP stages, 

where each stage corresponds to an operation. The 
l0    

   L 1 Jl 1

   


(8) BDP algorithm starts with the last stage and moves 

backwards in time. The states for a stage correspond  kh  
k      h  l0   j 0 

ljkh 
m

kh 
M

kh 


l 
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l 

b     ,c (b ,c )

 E  L (b , c 

to possible beginning times in Luh et al. 
[11]

. In 

view of the multiple completion times associated 

with a given beginning time, a state in this study 

is represented by a pair of operation beginning and 

completion times ( blj , clj ). The cumulative cost at 

( blj , clj ), denoted by Vlj (blj , clj ) , is obtained as the 

sum of the stage-wise cost  Llj  blj 
, c

lj   (plus tardiness 

penalty for the last stage and earliness penalty for 
the first stage) and the minimum cumulative cost 

stages. 

 
 Multiple Completion Times Associated with a 

Beginning Time 

For a given operation beginning time, the operation 

completion time depends on the lengths of 

intermittent idling times between transfer lots. As 

a result, there may be multiple completion times 

associated with a given beginning time. A detailed 

of a reachable state ( bl , j  1 , 

stage. 

c
l, j 1 ) at the successor 

analysis of this complicated phenomenon can be 

found in Liu and Luh 
[9]

. To deal with transfer lots 

effectively, a forward procedure is introduced here 
to determine these multiple completion times. For 

To be more specific, the BDP procedure starts with 

the last stage having the following terminal cost: 
operation (l, j), the number of multiple completion 

times associated with a beginning time, denoted by 
N

c
 +1, is determined by considering the machine 

V (b , c )  
lj
 

l,Jl 1     l,Jl 1     l,Jl 1 

wT 
2
  L b , c  (10) type being used, its processing time, and the 

processing times of its previous operations, as 
l   l l,Jl 1 l,Jl 1     l,Jl 1 

 
The cumulative cost when moving backwards to 

the predecessor stage is then obtained recursively 

according to the following BDP equation subject to 

the constraints (2) to (6): 

 

Vlj (blj , clj ) 

min 
l , j1     l , j1 Sl , j1      lj     lj 

L
lj 
(b

lj 
, c

lj 
)  V

l , j 1 
(b

l,j 1 
, c

l,j 1 
)

given in Appendix B. 

 
 The Earliest and Latest Operation Beginning and 

Completion Times 

For a given planning horizon, in view of constraints 

(2) to (6), the beginning time as well as the 

completion time of each operation must have 

the earliest (least) value and the latest (largest) 

value, respectively. Moreover, these parameters, 

the earliest and latest operation beginning and 

completion times, are helpful in effectively limiting 

the computational effort in BDP. Thus the earliest 
 Llj(blj, clj)  min Vl,j1(bl, j1, cl, j1) beginning and completion times are determined 

bl,j1,cl,j1Sl,j1(blj ,clj)
, 

to ensure that every operation can be started and 
completed as early as possible and that these 

1 j < J l -1 (11) 

In the above,  Sl, j 1 blj 
, c

lj   is the set containing all 

allowable {( bl,j 1 , cl,j 1 )} satisfying (2) to (6) for 

earliest times satisfy constraints (2) to (6) within 

the given time horizon. The earliest beginning and 

completion times of the current operation can be 

obtained recursively by proceeding forward from its 

the given ( blj , clj ), and is determined based on predecessor operation while enforcing constraints 

possible state transitions. 

 
The equation for the first stage is given by 

 

Vl0 (bl0 , cl0 ) 

(2) to (6). 

 
Similarly, computed values of the latest beginning 

and completion times ensure that the latest 

completion times of their successor operations 

2 

l    l l0      l0      l0 
)  (12) 

are still within the planning horizon  T  and they 
satisfy constraints (2) to (6). The latest beginning 

min 
bl1 ,cl1 Sl1 (bl 0 ,cl 0 )

Vl1 (bl1 , cl1 ) and completion time of the current operation can 

be calculated recursively by proceeding backward 

Let L
*
 represent the minimal lot sub problem cost from   its   successor   operation   while   enforcing 

l 

for lot l. The minimum 
*
 can be then obtained as 

constraints (2) to (6). 

the minimal cumulative cost at the first stage, i.e., 
 Backward Dynamic Programming Structure 

L
*
  min V (b , c ) Similar to Luh et al. 

[11]
, the DP stages correspond to 

l 
bl0 ,cl0 

l0      l0      l0 (13) operations and DP states to the possible operation 

beginning times. The numbers of DP states are 

Finally, the optimal beginning times and completion 

times can be obtained by tracing forward along the 

determined by the earliest and latest beginning times. 

Since transfer lots lead to multiple completion times 

L 
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lj lj 

lj 

lj 

lj 

S 

1, c  s  t 

for a beginning time, DP sub states are introduced stage, in BDP the cumulative cost, given by (11), is 

to consider these multiple values. computed from the last state b
l
 to the first state b

e
 

 
Let 

 

N
c
 +1 denote to the number of multiple 

(indexed by N
b
 -1 to 0), and for each state, from the 

last sub state to the first sub state (indexed by N
c
 to 

completion times associated with a beginning time 
for a stage (l, j) and a DP sub state be a pair of 

the feasible operation beginning time and one of its 

associated completion times. The sub state in a state 

0). For efficiency, determining the set S 

of feasible successor states is critical. 

l, j 1 blj 
, c

lj  

is indexed by 0, 1, …, N
c
 ; sub state 0, sub state 1, 3.3.1 Set of all Feasible States at Successor Stage 

lj b , c 
…, and sub state N

lj correspond to the pairs of the l, j 1 lj   lj 

beginning time and the completion time between 
which there is zero unit, one unit, …, and N

c
 units 

Let   parameters   tb      and   tc      denote   the   earliest 
possible beginning and completion times of ( bl,j 1 

lj , c ) S b , c  , respectively. In view of the 
intermittent idling time, respectively. For simplicity l,j 1 l, j 1 lj   lj 

(without loss of generality), sub state 0 in a state constraints (2) to (6), the times tb and tc can be 

is considered to coincide with that state itself, 

i.e., it is not necessary to give the corresponding 

completion time explicitly because there is no 

(zero) intermittent idling. 

 

Fig. 1 shows a sample of stages, states, sub states, 

and state transitions, where a sub state in a state 

calculated as follows. If the operation (l, j+1) is 

processed on standard machines and machines with 

setup, then 

 

t
b 
 b

lj 
 t

ljh 
 s

lj , 

 tb 
 N

l 
 t

l,j 1,h 
 

is represented in the format: (stage index, state 

index, sub-state index) and state transitions follow 

constraints (2) to (6). For example, (1, 0, 2) 

tc  max 
 



 lj lj l,j 1,h 
(14) 

represents the second sub state in state 0 at stage 

1. Based on this structure, the BDP procedure for 

solving a sub problem is now presented. 

However, if all transfer lots are required to be 
processed simultaneously, then 

 
 Backward Dynamic Programming (BDP) for 

tb  clj  slj 1 , tc  tb  tl,j 1,h 1 (15) 

Lot Sub problems For the given ( blj , clj ), considering the operation 

processing time requirements (4) and (5), the 

Unlike FDP, where we move from first to last completion time c
l,j 1 can be uniquely determined 

 

 

 
 

Fig. 1: DP Stages, States, Sub-states, and Transitions 

c 
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

l2 

N 

j 

V   b , c by (11), the 
lj lj lj l ,j 1 b     c 

lj lj 



l2 

l2 l2 

from each possible beginning time bl,j 1 . Since ( bl,j 1 , In view of (15) and (16), F
l , j 1 tb 

, t
c  can be 

c
l,j 1 ) S

l, j 1 blj 
, c

lj   may have intermittent idling recursively   obtained   by   comparing   the   cost Vl,j 1 tb , tc  at time  t   and the minimum of the costs 
times,  the  set  Sl, j 1 blj 

, c
lj   can  be  decomposed  into 

b
 

two disjoint subsets – with and without idling times – as: 

S b , c  

( Fl,j1 tb 1, tc  , Fl,j1 tb 1, tc 1 ) at time tb + 1. 

This can be expressed as follows. If the operation 
(l, j+1) is processed on the standard machines or 

l , j 1 lj   lj (16) machines with setups, then 
S

1
 b , c   S 

2
 b 

l , j 1 lj   lj 

 

where 

 

1 

l , j 1 lj 

 

 

 

bl , j 1 
, c

l,j 1  :  c 

F
l,j 1 tb 

, t
c  

min Vl,j1 tb , tc  , Fl,j1 tb 1, tc  , 

if 

S
l , j 1 blj 

, c
lj     tb   

 b
l , j 1  

 t
b  
 N

l , j 1 
,   (17) 

 

 

and 

c
l,j 1 

 tc 
 tc    tb  Nl  tljh 1 

F
l,j 1 tb 

, t
c  

(20) 

S 2 b    
b

l,j 1  
:   t

b 

 
c 
l ,j 1 


(18) min Vl,j1 tb , tc  , Fl,j1 tb 1, tc 1 , 

l , j 1 lj  
l 



1  b
l,j 1  

 b
l , j 1  if 

 

In the first set defined by (17), every element has 

intermittent idling times, and there are a total of 
tc    tb  Nl  tljh 1 (21) 

c 

l, j 1 elements with the same c
l,j 1 (equal to tc ). if all transfer lots are required to be processed 

In the second set defined by (18), each element is 

a sub state with index 0 because of no intermittent 

idling time, and is represented by the state itself. 

For example, as shown in Fig. 1, for the sub state 

simultaneously, then 
 

F
l,j 1 tb 

, t
c  

min V t , t , F 

 

 
t 1, t 

 

 
1





(22) 

(1, 0, 2), its ( tb , tc ) is represented by the sub state 
(2, 0, 3); the transition of the sub state (1, 0, 2) is 

 l,j 1      b     c l,j 1  b c 

represented by S
1
 (0,2) = {(2, 1, 2), (2, 2, 1)} and 

S 
2
 (0) ={ (2, 2, 0), (2, 3, 0), ..., (2, N

b
 -1, 0)}, 

where 
b
   represents the number of total states in 

The significance of (20) to (22) is that in most 
situations only one step comparison is needed to 

obtain  Fl , j 1 tb , tc  .  As a result, the cumulative cost 

stage 2. 

 
3.3.2 Stage wise Minimum Cumulative Cost of the 

Successor Stage 

 

in (11) can be rewritten as: 

V
lj  blj 

, c
lj   

L b , c   F t , t 






(23) 

major computational work is to find the minimum 

cumulative cost among all elements in  Sl, j 1 blj 
, c

lj  
The computational complexity of the above BDP 

O( Nc
T ) 

. The following computation-critical equations are is lj , the same as that of FDP analyzed in 

developed to obtain the minimum with the least Luh and Hoitomt [10]. 

amount of computation. Let F
l , j 1 tb 

, t
c  denote 

the minimum cumulative cost of the successor 
stage (l, j+1) within time ( t , t ) among all possible 

3.3.3 Required Setups and Simultaneous Processing 

of all Transfer Lots 
b      c The setup times t for transfer lots are not explicitly 

bl,j 1 
, c

l,j 1   Sl, j 1 blj 
, c

lj   , i.e., 

F t , t  

ljh 

expressed in the above BDP equations; they are 
considered in the computation of stage wise state 

l,j 1  b     c cost L b , c  by (9). Thus setup requirements 
min lj lj      lj 

bl,j1 tb ,cl,j1 max(tc ,bl,j1  Nltl,j1,h 1)

V
l,j 1 bl,j 1 

, c
l,j 1 

(19) have little effect on BDP computational efficiency. 

 
However, as given by (20) to (22), BDP equations 

are affected by the machines requiring simultaneous 

 N 

N 

In computing the cost lj 

s 
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l s 

 kh l s 

processing of all transfer lots in a lot. Simultaneous 

processing is required, for example, in heat 

treatment operation that is subcontracted out. Here 

all production lot units, that is, all transfer lots 

are sent to the subcontractor together for the heat 

treatment operation. But for operations processed 

on these machines sub states are only with index 0, 

not adding much computational burden in the BDP 

procedure. 

 
 Slack Variable Sub problems and the Dual 

Problem 

 
 Slack Variable Sub Problems 

Little effort is needed to solve the slack variable sub 

problems because these sub problem solutions only 

require summations of the multipliers: 

 Heuristics 

 
The computation of sub problem solutions and 

multiplier updates are stopped after a fixed amount 

of computation time or a fixed number of iterations, 

where iteration consists of solving all the sub 

problems once. Since machine capacity constraints 

have been relaxed, solutions of sub problems, when 

put together, generally do not constitute a feasible 

schedule. A simple heuristic procedure is usually 

used to adjust sub problem solutions to form a 

feasible schedule. The heuristics developed for 

transfer lots are based on the version developed by 

Luh and Hoitomt 
[9]

 and Luh et al. 
[10]

. 

 
The heuristics start with the solutions of the DP sub- 

problems that give the actual operation beginning 

times and completion times. Since the setup for an 

min L  
, with  

L
s   
 

kh
m

kh (24) operation is  always immediately  followed  by the 
mkh 

s
 k ,h   start of that operation on the first transfer lot, this 

setup is scheduled based on the availability of the 

desired machine and the start time of the current 
3.4.2 The Dual Problem 
With the optimal costs of lot sub problems and 

slack variable sub problems given by { L
*
 } and L

*
 , 

respectively, the high-level dual problem, denoted 

by D, is obtained as 

operation of the first transfer lot. For the first 

transfer lot in a production lot, its current operation 

can be started after the completion of its predecessor 

operation. For other individual transfer lots in the 

same lot, the current operation for a transfer lot can 

be processed as soon as the predecessor operation 
max D 

, with  D  L*
  L

*
 

kh 
M

kh (25) of this transfer lot and the current operation of the 
l k ,h   

Since the dual function D is concave, piece-wise 

linear, and consists of many facets, the sub gradient 

method is commonly used to solve it. However 

this method suffers from slow convergence. To 

overcome this, instead of solving all sub problems 

for multipliers updates the Interleaved Sub-Gradient 

(ISG) method was suggested that update multipliers 

after solving each sub problem. Furthermore, since 

the dual function approaches a smooth function as 

the problem size increases, the Conjugate Gradient 

(CG) methods have more attractive convergence 

properties for such problems. Therefore, the newly 

developed Interleaved Conjugate Gradient (ICG) 

method that incorporates the “interleave” concept 

with the CG method can provide faster convergence 

(Zhao et al. 
[11]

. It is used to update the multipliers 

in this study. 

 
As presented in Luh et al. 

[10]
, a rough estimate 

of the number of multipliers when there are K 

enumeration steps is kh : K  H . With the “time 

step reduction” technique, we do not need to have 

a multiplier for each of the resolution steps T, thus 

reducing the computational complexity for solving 

the high-level dual problems significantly. 

predecessor transfer lot are complete, together 

with the consideration of machine availability. For 

the operation processed on the machine requiring 

simultaneous processing of all transfer lots in the 

same lot, since such machine capacity is treated as 

large, this operation can begin after the completion 

of the predecessor operation of the last transfer lot. 

 

For simplicity of presentation, we have not given 

the details of the situation where multiple machine 

types can do a given operation; the BDP can be 

easily extended to this situation by considering 

multiple stages for an operation, one for each 

applicable machine type. The quality of a schedule 

obtained is quantitatively evaluated by its relative 

duality gap which is the relative difference between 

the feasible schedule cost J and its lower bound the 

dual value D; i.e., Duality Gap  (JD)D100%. 

The stopping criterion for the solution procedure 

may be to obtain a given duality gap within an 

acceptable range. 

 

 

4 NUMERICAL TESTING RESULTS 
 

The current algorithm that combines BDP and ICG 
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c 
lj 

l,Jl 1 l0 

Tab. 1: Data and Results for Case 1: Transfer Lots 

Lot l 

(N
l
) 

 

Oper. j 
 

Machine h 

 

t
ljh 

 

dl 

 
wl 

Schedule 

1.1  
blj , clj  

Schedule 

1.2  
blj , clj  

0 (5) 0 M0 2   (12, 21) (6,15) 

 1 M1 1   (14, 22) (16, 20) 

 2 M2 2 1 1 (15, 24) (21, 30) 

1 (2) 0 M0 3   (0, 5) (0, 5) 

 1 M1 1   (3, 6) (6, 7) 

 2 M2 2 0 1 (5, 8) (8, 11) 

2 (2) 0 M1 1   (0, 1) (0, 1) 

 1 M2 2   (1, 4) (2,5) 

 2 M0 3 1 1 (6, 11 ) (16, 21) 

 

Tab. 2: Scheduling Performance for Case 1: Transfer Lots 

Schedule 
Make 

span 
Average lead-time 

Average WIP 

inventory 

Average machine 

utilization (%) 

Average 

tardiness 

Schedule 1.1: Transfer Lots 25 6.4 0.26 65.3 15 

Schedule 1.2: Without Transfer Lots 31 16 0.52 52.7 21 

 

within the LR framework has been implemented 

using the object-oriented programming language 

C++, and extensive initial testing has been 

performed on a Sun Sparc 10 workstation. Four 

test cases are presented below to evaluate the 

cn        bn   1 ; WIP inventory of the nth transfer lot 

in lot l = (lead-time of the nth transfer lot in lot 

l)/ make span; Machine utilization of machine h =           
(t    t 

s
 ) 
 

/available time in makespan; and 

  ljh ljh 
performance of the method developed. The first 

case shows that using transfer lots improves the 
  l j 
Tardiness (delivery delay) of the nth transfer lot in 

scheduling performance greatly. Case 2 illustrates lot l = max (0,  c
n 1 d ). In the above, b

n
 and 

l,Jl 1 l lj 

that the transfer lots can be scheduled effectively 

on various types of machines: standard machines, 

machines with setups, and   machines   requiring 

all transfer lots in the same lot to be processed 

simultaneously. This increases the applicability of 

the model to a substantially larger set of realistic 

environments. Case 3 and Case 4 demonstrate the 

capability of the method developed for scheduling 

real problems with different sizes (number of lots, 

parts, transfer lots, and time horizon). All cases 

assume that all machines are available throughout 

the planning horizon, starting from period zero. 

Using heuristics, feasible planning horizons are 

initially generated based on machine availability 

and lot processing time requirements. For the first 

three cases, the enumeration step is equal to the 

resolution time unit (i.e., R = 1). In addition to the 

duality gap, the following practical metrics, used by 

various industries, are also applied to evaluate the 

scheduling performance. 

n
 represent the beginning time and completion 

time of the operation (l, j) of the nth transfer lot, 

respectively. 

 
In addition, a comparison of the current algorithm 

with the common dispatching rules used in practice 

has been suggested by the editor. The resulting 

schedules using these heuristic dispatching rules 

are being computed and will be presented for 

examination by the readers via the internet. 

 
Case 1 (Schedules With and Without Transfer 

Lots). This case is to show by a small example 

that, as expected, scheduling with transfer lots 

can indeed improve the scheduling performance 

greatly. There are three lots to be scheduled on three 

machine types, with one machine of each type. 

There are 5 parts in lot 0 and 2 in lots 1 and 2. The 

data is given in Tab. 1. The planning horizon is 40 

time units (i.e., T = 40). 

The metrics are: Make span = max c
n

  min b
n
 1  The problem is first solved with transfer lots of size 

l,n 
l, Jl 1 

l,n 
l0

 

; Lead-time of the nth transfer lot in lot l = one. Each part is, thus, treated as a transfer lot. The 

feasible schedule, Schedule 1.1, is generated with a 
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(a) 

 

 

(b) 

 
Fig. 2: (a). Gantt Chart of Schedule 1.1: Scheduling with Transfer Lots; (b). Gantt Chart of Schedule 1.2: Scheduling 

Without Transfer Lots 

 

cost of 693 and a lower bound of 693, in less than 

CPU time of one second. Thus the solution found 

is the optimal solution. The operation beginning 

times and completion times of Schedule 1.1 are also 

shown in Tab. 1, with Gantt chart given in Fig. 2a. 

 
Then the same problem is solved assuming all lots 

are indivisible (i.e., without using transfer lots). The 

feasible schedule, Schedule 1.2, has a cost of 1362 

with a lower bound of 1361.87, and is obtained 

in less than one second CPU time. The resulting 

operation beginning times and completion times 

are also presented in Tab. 1. The Gantt chart of the 

Schedule 1.2 is shown in Fig. 2b. 

 
Tab. 2 gives the metrics for the scheduling 

performance of both Schedule 1.1 and 1.2. 

Comparing with the schedule obtained without 

considering transfer lots (Schedule 1.2), transfer 

lots have significantly improved the average lead 

time, average WIP inventory, average machine 

utilization, and average delivery delay time. These 

imply that the use of sub-lots of smaller size and 

the overlapping of consecutive operations results 

in less work in process and less product delivery 

delay. 

 
Case 2 (Scheduling Transfer Lots with Various 

Machine Categories). This case is to show that 

the method presented here can effectively schedule 

transfer lots on three key machine categories: 

standard machines, machines with setups, and 

machines where all transfer lots in a lot must be 

processed simultaneously. There are four lots to 

be scheduled on five machine types, each machine 

type with one machine. Each lot has a different due 

date and Lot 0 has the highest priority (weight = 

3) among the four lots while Lot 2 has a higher 

priority (weight = 2) than the other two. Lot 3 has 

an arrival time of 2 units, and each lot has four 

operations. Some operations processed on M0 

and M2 need setups. For the operation processed 

on M4, all transfer lots in a lot must be processed 

simultaneously. The detailed data about lots and 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR)  

Volume 46, Issue: Special Issue of December 2017  

An Indexed, Referred and Peer Reviewed Journal with ISSN (Online): 2319-6564  

www.ijesonline.com 

167 

 

Tab. 3: Data and Results for Case 2: Various Machine Types 

 

Lot l (N
l
) 

 
 

Oper. J 

 
 

Mach h 

 
tljh 

 
t s ljh 

 
slj 

 
a l d l 

 
wl 

 
Schedule 2 

( blj , clj ) 

0 (4) 0 M0 3 - 1 0  (6, 17) 

 1 M2 2 4 -   (12, 20) 

 2 M4 2 - -   (21, 22) 

 3 M1 1 - - 0 3 (23, 26) 

1 (2) 0 M1 2 - - 0  (0, 3) 

 1 M2 3 - 1   (2, 7) 

 2 M0 2 2 - 1 1 (20, 23) 

 3 M4 2 - -   (24, 25) 

2 (3) 0 M0 1 3 1 0  (3, 5) 

 1 M1 2 - -   (5, 10) 

 2 M4 2 - 1   (11, 12) 

 3 M3 5 - - 2 2 (14, 28) 

3 (3) 0 M3 2 - - 2  (2, 7) 

 1 M4 2 - -   (8, 9) 

 2 M2 1 2 -   (23, 25) 

 3 M1 3 - 1 8 1 (27, 35) 

  
 

 

Fig. 3: Gantt Chart of Schedule 2: Scheduling Transfer Lots with Various Machine Types 
 

operations are given in Tab. 3. “Time-outs” are also b
lj , clj ) are also presented. The Gantt chart of the 

considered in this case. 

 
The feasible schedule, Schedule 2, has a cost of 

4740 with a relative duality gap 3.53%, and is 

obtained in 2 seconds. In Tab. 3, the resulting 

operation beginning times and completion times ( 

feasible schedule is shown in Fig. 3. The make span, 

average lead-time, average WIP inventory, average 

machine utilization, and average tardiness is 36, 

21.4, 0.59, 55%, and 19.7, respectively. This once 

again shows that the schedules generated involving 

transfer lots on all three kinds of machines is of a 
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high quality. 

 
The following two observations on the solution presented 

in Fig. 3 are made to illustrate how transfer lots are 

scheduled effectively on the machines with setups and 

machines requiring simultaneous processing of all 

transfer lots. First: the setup for operation (0, 1) is 

started at time 8 on M2 while the first transfer lot of lot 0 

is still in process for its operation (0, 0) on M0. Thus 

once the first transfer lot completes its operation (0, 0) and 

is transferred to M2, the operation (0, 1) of the first 

transfer lot is started immediately without any delay for 

the machine setup. The requirement of one time unit 

“time-out” (transportation time, for example) between 

operation (0, 0) and (0, 1) can be also easily observed. 

Second: the operation (3, 1) is started on M4 after the 

operation (3, 0) of all transfer lots in lot 0 is finished. 

Once the operation (3, 1) is completed, the first transfer 

lot of lot 3 is moved to M2 and the operation (3, 2) is 

started as soon as the M2 is available. These two 

examples confirm the validity of lot dynamic modeling 

for different machine categories. 

 
The Cases 3 and 4 draw data from a manufacturer 

producing aircraft/turbine-generator parts. According to 

the production requirements, the parts to be scheduled 

are grouped into a number of lots with various due dates 

and weights. Tab. 4 summarizes the test data for Cases 3 

and 4. 

 
Case 3 (A Real Problem Using Different Transfer- 

Lot Sizes). This case is to demonstrate the capability 

of the method developed for scheduling real 

problems using different transfer lot sizes. As given 

in Tab. 4, the planning horizon in this case is 780 

hours, and therefore the number of total multipliers 

is 17940. First, each part is treated as a transfer lot 

(i.e., transfer lot size = 1). Then the total number 

of transfer lots is 144 and the average number of 

transfer lots in a lot is 5.78. The parts include those 

that have operations requiring setups and can be 

done on alternative machines, however, these are 

less than about 5% of the parts. The testing results 

are shown in Tab. 5. It can be seen that the algorithm 

does not require long computational time to get high 

quality schedules for real problems of this size. To 

see the impact of transfer lot size on scheduling, 

every two parts are grouped into a transfer lot (i.e., 

transfer lot size = 2). The total number of transfer 

lots is 72, and the average number of transfer lots 

in a lot is 2.88. The testing results are also given 

in Tab. 5. It can be seen that the larger the transfer 

lots size the larger the tardiness (feasible cost), but 

its solution is closer to the optimum. This implies 

that smaller transfer lot size usually provides a 

better solution as expected, but it requires more 

computations. 

 
Case 4 (A Larger Real Problem with and without Time 

Step Reduction). A larger problem is tested in this case 

to further illustrate the capability of the method 

developed for scheduling large-size practical problems. 

The planning horizon is 1170 hours for scheduling a total 

of 61 lots. First, without using time step reduction (i.e., R 

= 1), the number of total multipliers is 29150 and the 

results are summarized in Tab. 6. To show the effect of 

“time step reduction” on scheduling large problems, R = 

10 is used, decreasing the number of total multipliers to 

2915. These results are also summarized in Tab. 

6. For comparison, the performance of schedules is 

measured at several iteration counts: 6, 24, 36, and 

48. It is obvious that, at a given iteration number, R=10 

needs much less CPU time than R=1 to get a good 

schedule because of smaller number of multipliers 

required by R=10. It can be also seen that R=1 gives a 

better schedule than R=10 in view of the modeling 

approximation caused by larger 

 

Tab. 4: Description of Data for Cases 3 and 4: Larger Problems 

 

Case No. 
No. of 

Lots 

No. of 

Parts 

No. of Part 

Types 

Ave. No. Of 

Operations/Lot 

No. of Machines / 

Machine Types 

Planning 

Horizon (hour) 

3 25 144 17 8.48 39 / 25 780 

4 61 339 17 10.8 44 / 27 1170 

 
 

Tab. 5: Results for Case 3: Different Transfer Lot Sizes 

Transfer lot size = 1, no. of transfer lots = 144 Transfer lot size = 2, total no. of transfer lots = 72 

No. of 

Iterations 

Feasible 

Cost 

Duality 

Gap 

CPU Time 

(second) 

No. of 

Iterations 

Feasible 

Cost 
Duality Gap 

CPU Time 

(second) 

25 86301 21.9% 302 25 98620 17.1% 305 

50 86301 18.2% 593 50 96470 12.2% 602 
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Tab. 6: Results for Case 4: Time Step Reduction Technique 

R = 1 (i.e., without time step reduction) R = 10 (i.e., with time step reduction) 

No. of 

Iters. 

Average 

lead-time 

Average 

WIP 

Average 

delay 

CPU (s) No. of 

Iter. 

Average 

lead-time 

Average 

WIP 

Average 

delay 

CPU (s) 

6 226 0.28 38 560 6 241 0.28 41 384 

24 204 0.27 34.4 2052 24 212 0.27 38.8 1364 

36 199 0.266 28.5 3161 36 203 0.272 30.9 2021 

48 192 0.255 28 4154 48 203 0.263 29.5 2781 

 

values of R. Measured by practical metrics, these schedules obtained in about 20 minutes for R=10 and in 35 

minutes for R=1 look quite reasonable. The duality gap (not included in the table) in this case is significantly 

larger than previous cases and is still under study. This case implies that for large problems good schedules can 

be obtained within a reasonable time by using the time step reduction technique. 

 

 

5 CONCLUSION 
 

The extended lot dynamics model and the backward dynamic programming (BDP) technique have been developed 

for scheduling with fixed-size transfer lots. The effective handling of transfer lots on machines with setups and 

machines where all transfer lots in a lot are required to be processed simultaneously is of practical significance. 

To apply BDP to solve lot sub problems efficiently, the number of multiple completion times associated with each 

operation beginning time for a lot and the earliest and latest beginning times and completion times for all 

operations have been be determined. With sub states introduced, state transitions determined, and computation-

critical DP equations   derived for computing stage wise minimum cumulative costs at successor stages, the 

BDP algorithm is developed to efficiently solve the lot sub problems that contributes to the state-of-the-art 

scheduling practice. Numerical results indicate that the method can generate high quality schedules with 

reasonable computational effort. 
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