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ABSTRACT: This article offers enhanced analytical techniques for modelling reinforced concrete frame nonlinear static and dynamic 
responses. The nonlinear hysteretic behaviour of reinforced concrete elements is described using a novel technique. This stra tegy involves 
breaking down the fundamental mechanisms that regulate the hysteretic behaviour of RC members into separate subelements and 
connecting them in series to create the RC member element. This study presents a detailed presentation of a shear subelement.  Shear 
sliding in the areas that matter and shear distortion along the member are both described. The proposed shear subelement can describe 
how an axial force interacts with the opening and closing of shear cracks in situations where there is a significant axial fo rce. Correlation 
studies of analytical results with experimental evidence of the load-displacement response of shear critical RC parts and subassemblies 
during static load reversals are done to demonstrate the validity of the suggested model. In general, the analytical findings  and 
experimental findings are in excellent accord. 

INTRODUCTION 

In reinforced  concrete (RC) structures designed according 
to present provisions of earthquake resistant design, the forces 
induced in the structure during a major earthquake will exceed 
the yield capacity of some members and cause large inelastic 
deformations in critical regions of the structure. 

Since the seismic response of the structure depends on the 
hysteretic behavior of these regions, reliable models of such 
behavior need to be developed. Ideally, these models should 
be derived from the material properties of concrete and rein- 
forcing steel with due account for bond slip of reinforcement, 
the discrete nature of flexural and shear cracks, and shear slid- 
ing. Such detailed finite-element models, however, are prohib- 
itively expense in the dynamic response analysis of large struc- 
tural systems. Moreover, the detailed information from such 
refined nonlinear analyses is unnecessary in the global re- 
sponse evaluation of large structures (Umemura and Takizawa 
1982). 

In many practical situations, macroscopic member models 
of reinforced concrete elements offer sufficient accuracy in the 
simulation of the seismic response of the structure. These mod- 
els approximate the physical behavior  of RC members and 
vary in their complexity from phenomenological point hinge 
models to layer and fiber models. In the class of phenome- 
nological models, a new approach is followed in this study. 
This approach consists of identifying the basic mechanisms 
that control the hysteretic behavior of critical regions and, if 
possible, isolating these mechanisms in individual subele- 
ments. Each member is then made up of a number of such 
elements. 

This approach is, in many respects, similar to an earlier 
model (Otani 1974). In the following, the same types of sub- 
elements presented for girders in another paper (Filippou et al. 
1999) are extended to account for the effect of axial force. 
Furthermore, a shear subelement that describes the shear slid- 
ing in the critical regions and the shear distortion along the 
member is presented in detail. In cases where a substantial 
axial force is present, this subelement is capable of describing 
the interaction of axial force with the opening and closing of 
shear cracks. 

 
 

The proposed nonlinear model is implemented in a com- 
puter program for the nonlinear static and dynamic analysis of 
RC structures. This paper focuses on analytical correlation 
studies of the nonlinear static response of RC members and 
subassemblies to cyclic alternating lateral loads. The dynamic 
response of frame subassemblages to earthquake excitations is 
discussed elsewhere (D’Ambrisi and Filippou 1997). 

 
REINFORCED CONCRETE FRAME ELEMENT 

A reinforced concrete member is decomposed into subele- 
ments. Each subelement describes a different deformation 
mechanism that affects the hysteretic behavior of critical 
regions in RC elements. This modeling approach permits the 
simulation of the behavior of RC members subjected to both 
low and high shear stresses. The following presentation dis- 
cusses the properties of subelements for the general case of a 
frame member with axial force. Girder subelements can be 
directly derived as a special case by setting the axial force 
equal to zero. In presenting the different subelements, the in- 
teraction of axial load, bending moment, and shear force with 
the opening and closing of the cracks is taken into account. 
The following subelements are used in this study (Fig. 1): (1) 
an elastic subelement; (2) a spread plastic subelement; (3) an 
interface bond-slip subelement; and (4) a shear subelement. 
Since the presence of axial load affects the hysteretic behavior 
of frame members with high shear stress differently from that 
of members with low shear stress, the introduction of two sep- 

 

FIG. 1. Decomposition of RC Frame Member into Different 
Subelements 
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arate subelements to account for the effect of shear and bond 
slip facilitates the accurate and rational description of the hys- 
teretic behavior of reinforced concrete frame members with 
axial force. In addition to the effects of shear, flexure, slip of 
reinforcement, and opening and closing of the cracks, the 
frame element also includes axial deformations and geometric 

P-Δ effects. 
 

Linear Elastic Subelement 

The linear elastic subelement represents the flexural behav- 
ior of the RC member before yielding of the reinforcement. 

bility matrix contains off-diagonal elements which represent 
the coupling between the two plastic end zones. Such coupling 
is absent in point hinge models of RC members. 

Interface Bond-Slip Subelement 

The interface bond-slip subelement models the fixed-end ro- 
tation due to bond slip of reinforcement and the effect of open- 
ing and closing of flexural cracks on the moment-rotation re- 
lation. It is represented by two rotational springs connected by 
a rigid bar. The flexibility matrix of this subelement is given 
by: 

Its linear elastic flexural stiffness is significantly influenced by 
f    = [fi         0] (3) 

the magnitude of axial load. In this model, the effect of axial 
load on the elastic flexural stiffness is taken into account in 
deriving the primary curve of the moment curvature relation 
of the member. The primary moment-curvature relation under 
constant axial force and gradually increasing bending moment 
is derived by assuming a linear strain variation through the 
depth of the section. The moment-curvature relation is then 
approximated by a bilinear elastic, strain-hardening curve. The 
stiffness of the elastic subelement is based on the secant stiff- 
ness of the section at yielding of the reinforcement, which is 

equal to EI  = My/φy. The flexibility matrix of this subelement 
is given by 

  L   [ 2 —1] 

ibs 0   fj
 

The coefficients fi  and fj   depend on the hysteretic behavior 
of the springs at member ends i and j, respectively. In mod- 
eling the hysteretic behavior of the interface bond-slip sub- 
element, the primary curve is derived from first principles of 
reinforced concrete design by assuming a uniform bond stress 
distribution in the anchorage zone of the reinforcement and 
accounting for the significant bond damage in the cover region 
of the member into which the reinforcement is anchored. 

The hysteretic behavior of the springs is shown in Fig. 2. 
It is determined by the following rules (Fig. 2): 

1. A bilinear elastic-strain hardening envelope curve (ABC) 
fel = 

6EI —1 2 
(1) describes the monotonic behavior. 

2. A constant stiffness  is  assumed  until  the  end  section 

where L = clear span of the member. 
 

Spread Rigid-Plastic Subelement 

The spread rigid-plastic subelement represents the inelastic 
flexural deformation of the member after yielding of the re- 
inforcement. It accounts for the gradual spread of inelastic 
flexural deformations into the member as a function of loading 
history. An inelastic zone of gradually increasing length is lo- 
cated at each end of the member. The two inelastic zones are 
connected by an infinitely rigid bar to form the spread rigid- 
plastic subelement. The flexibility matrix of the spread plastic 
subelement takes the form (Filippou and Issa 1988) 

reaches the yield moment My. 
3. Unloading takes place along lines FG and JK, which are 

parallel to the initial stiffness. 
4. Once unloading is completed, there is a significant re- 

duction in stiffness caused by crack opening. This stiff- 
ness remains in effect until the crack closes (points H 
and O). The point at which the crack closes is determined 
by parameters c1 and c2 in Fig. 2. These parameters con- 
trol the amount of pinching of the hysteretic moment- 
rotation relation of the interface bond-slip subelement 
and depend on the level of axial load. The amount of 
pinching increases with increasing axial load. Values for 
these factors are derived from analyses with the joint 

f11 

pl f21
 

f12 

f22 

(2) 
model by Filippou et al. (1983). 

5. Once the crack closes at points H and O, reloading fol- 
lows a straight line connecting the point of crack closure 

where the terms of the flexibility matrix in (2) are given in 
Filippou et al. (1999). It is interesting to note that the flexi- 

with the point of maximum previous rotation on the en- 
velope curve (points I and S in Fig. 2). 

 

 

FIG.  2.  Interface Bond-Slip Subelement 
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6. In the case of partial unloading followed by reloading, 
the loading stiffness is parallel to the elastic stiffness un- 
til the point at which unloading started is reached (C-D- 
E), (L-M-N), (P-Q-R). 

 

Shear Subelement 

There is considerable experimental evidence showing that 
the postelastic response of cyclically loaded members with 
conventional detailing of reinforcement can be affected by 
shear deformations in the inelastic zones (Celebi and Penzien 
1973; Atalay and Penzien 1975; Zagajeski et al. 1978; Spurr 
and Paulay 1984; Ozcebe and Saatcioglu 1989; Mander et al. 
1993; Pinto et al. 1995). This is especially the case in members 
with low shear span to depth ratio a/d. The hysteretic shear 
force-deformation relation of these members is characterized 
by a stiffness reduction that depends primarily on the magni- 
tude of inelastic load reversals and the number of postyield 
load cycles. It is reported by Celebi and Penzien (1973) that 
the area enclosed by the hysteresis loops of a beam that is 
cycled a few times at the same displacement ductility is suc- 
cessively decreased. The axial load has a strong effect on the 
column shear behavior (Atalay and Penzien 1975). Columns 
with a shear span to depth ratio less than 2 exhibit large shear 
deformations (Zagajeski et al. 1978). In members subjected to 
cyclic shear under constant axial load, cyclic stiffness deteri- 
oration and pinching of the shear force-displacement relation 
near zero load is observed (Atalay and Penzien 1975). The 
stiffness deterioration and pinching effect are less pronounced 
in columns under high axial loads. 

The basic mechanisms of shear transfer are: direct shear 
stress transfer in the compression zone of the member; shear 
transfer at the crack due to aggregate interlock; shear transfer 
through dowel action of reinforcement; and transfer through 
shear reinforcement. The shear deformations of plastic hinge 
regions under cyclic loading are largely due to sliding along 

loosened pieces  of concrete. Both aggregate interlock, which 
is a function of the crack width, and the dowel action of the 
longitudinal and transverse reinforcement contribute to the 
sliding resistance of the section. 

Different models of shear behavior have been proposed in 
the literature (Celebi and Penzien 1973; Atalay and Penzien 
1975; Spurr and Paulay 1984; Roufaiel and Meyer 1987; Oz- 
cebe and Saatcioglu 1989). It is not economical to model shear 
behavior in its full complexity in a model that will be used in 
the dynamic response analysis of large multi-degree-of-free- 
dom structures. Practical limitations are imposed by the scope 
of the frame element idealization of the present study and by 
the lack of quantitative information about the response of se- 
verely cracked concrete under postyield load reversals. More- 
over, the shear response is generally secondary to the flexural 
response in RC members of common span to depth ratios and, 
consequently, the same degree of accuracy as for the flexural 
contribution is not justified for shear. 

The model presented in this study is a simple phenomeno- 
logical description of the shear distortion behavior of rein- 
forced concrete members subjected to severe cyclic loading. 
It is primarily directed at representing the aggregate interlock 
and interaction of shear and axial forces with the opening and 
closing of the cracks. The model consists of a concentrated 
translational spring of zero dimension located at each member 
end. The two springs are connected by an infinitely rigid bar 
to form the subelement [Fig. 3(a)]. The basis for the derivation 
of the flexibility matrix of this element is the section shear 
force-deformation relation. Equilibrium yields the relation be- 
tween shear force and end moments. The contragradient law 
of matrix analysis  yields the relation between end rotations 
and shear deformation. It is thus possible to establish a relation 
between end moments and corresponding rotations, which 
takes the form 

θshr  = fshr M (4) 

wide,  full  depth  cracks  opened  up  by  large  plastic  tensile where the flexibility matrix of the shear subelement f takes 
strains in the longitudinal reinforcement. Shear sliding can be 
significant even when the maximum nominal shear stress is 
quite moderate (Spurr and Paulay 1984). Inclined shear cracks 
combine with flexural cracks and lead to a reduction in the 
effective shear rigidity of the plastic hinge zone of the mem- 

the form  
 

 fs        1   1 
shr 

L2       1   1 

shr  

 

(5) 

ber. The overall shear displacement is the result of the com- 
bined effect of the rotational and sliding displacements of the 

where fs = flexibility (inverse of the tangent stiffness) of the 
section shear force-deformation relation and depends on the 
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FIG.  3.  Shear Subelement: (a) 
Shear Distortion Distribution; (b) 
Shear Subelement Deformation 

monotonic envelope and the hysteretic model. The flexibility 
matrix of the shear subelement is not invertible on its own, as 
is well known from structural analysis. It becomes invertible 
only after the addition of the flexural contribution. It is worth 
noting that the pictorial representation of the shear subelement 

tation θmax  in the same direction of loading by a factor 
c. Thus, a new point of maximum rotation towards 
which reloading occurs is defined on the envelope 
curve as follows: 

in Fig. 1 is only schematic, since in a flexibility formulation, θ*max   = c ∙θmax (8) 

one is only interested in the end rotations of the simply 
supported beam, which are in this case equal, as is obvious 
from (5). 

The monotonic envelope of the section shear force-defor- 
mation relation is derived with the modified compression field 
theory (Vecchio and Collins 1986). The hysteretic shear force- 
deformation relation is derived from the following set of rules 
[see Fig. 3(b)]: 

 
1. The envelope curve is a bilinear monotonic curve [curve 

ABC in Fig. 3(b)]. A trilinear envelope curve that in- 
cludes the shear behavior before cracking is not deemed 
important, since emphasis is placed on the postyield be- 
havior of RC frames. 

2. The model exhibits a constant initial stiffness until reach- 
ing the yield moment My of the end section. 

3. Yielding of the shear spring is assumed to take place at 
the same time as flexural yielding. The assumption of 
simultaneous shear and flexural yielding is supported by 
experimental evidence (Ozcebe and Saatcioglu 1989). 

4. Unloading takes place along lines FG and JK parallel to 
the initial stiffness. 

5. After unloading is completed and upon reloading in the 
opposite direction, there is a significant reduction in stiff- 
ness until the crack closes. In this study, the point at 
which the crack closes (points H and O) is determined 
according to suggestions of an earlier study (Ozcebe and 
Saatcioglu 1989): 
a. If the member has not been loaded beyond the crack- 

ing load Mcr in the direction of reloading, the initial 
reloading path aims at the cracking load Mcr on the 
primary curve (point H) and then follows the primary 
curve. Mcr is the bending moment at which the prin- 

cipal tensile stress is equal to 2√f 'c . 
b. If Mcr has been exceeded in the direction of reloading 

during previous cycles, reloading up to a moment 
equal to Mcr (point O) follows a straight line passing 

through a point defined by (θmax, M *). θmax is the max- 
imum previous equivalent  shear  rotation. The value of 
M * depends on the level of axial load such that lower 
pinching of the hysteresis loops results under higher 
axial compression. The following empirical formula, 
which reflects the effect of axial load on the pinching 
of the hysteretic shear force-deformation re- lation, is 
adopted for M * (Ozcebe and Saatcioglu 1989): 
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where c ranges from 1.0 to 1.25 (Banon et al. 1981; 
Filippou et al. 1992). No strength degradation occurs 
for cycles that do not cross the moment (zero 
rotation) axis (U-V-W-X). 

6. If a change in load direction occurs during unloading, 
reloading takes place with a slope equal to the elastic 
stiffness until the point at which unloading was initiated 
(C-D-E), (L-M-N), (P-Q-R). 

 
The branches of hysteretic behavior between points K 

and O and between points G and H are soft central regions 
where shear sliding occurs under a small shear force along 
open full depth cracks. After the cracks close, there is a 
sharp increase in the shear stiffness (O-S, H-I). This is 
followed by a region of small shear stiffness under large 
rotation values [S-T, I-J in Fig. 3(b)]. This stiffness reduction 
arises from the opening of major inclined flexural-shear 
cracks caused by increasing plas- tic tensile strains in the 
longitudinal reinforcement. 

The study of two rough, interlocking surfaces that move 
along the plane of the shear crack indicates that shear 
displace- ments need to be much larger than those along the 
initially uncracked interfaces in order to effectively engage 
the aggre- gate particles that protrude from the two faces 

of the crack. The larger the crack width, the larger the shear 
displacement needed to engage the aggregate particles. The 
increase in crack width  is restrained by the clamping effect of 
the axial load. The effect of axial load  on  the shear behavior 
of the element is included as follows: 

 
1. The axial load increases the yield moment capacity of 

the column section and, thus, delays the opening of flex- 
ural cracks due to yielding of flexural reinforcement. 
This, in turn, delays the propagation of flexural-shear 
cracks and results in a reduction of shear sliding. The 
axial load effect is taken  into  account in the derivation 
of the primary curve of the shear force deformation re- 
lation with the modified compression field theory. 

2. The axial load reduces the pinching effect due to sliding. 
The pinching parameters of the column shear subelement 
result in a larger amount of pinching with increasing ax- 
ial compression, as is evident in (7). 

 

Although the concrete contribution to shear resistance in- 
creases with axial load, a higher compression leads to higher 
shear forces for axial loads below the balanced point. The axial 
force-bending moment interaction diagram shows that the 

M * = Mmax ∙exp (α 
θmax 

θy 

 

(6) 
yield moment increases from M0 to Mb as the axial load in- 
creases from zero to the balanced point value Pb. Conse- 
quently, in a column subjected to an axial load near Pb, the 

where Mmax   = maximum previous end moment; θmax 

= maximum previous equivalent shear rotation; θy = 
corresponding rotation at yield; and 

P 
α = 0.82 

|P | 
— 0.14 ≤ 0 (7) 

where P is the axial compressive force (negative 
value); and P0 = nominal compressive strength of the 
member. 

c. Reloading beyond Mcr follows a straight line towards 
point S on the primary envelope curve. Point S is 
determined by multiplying the maximum previous ro- 

shear force at flexural yielding will be larger than the shear 
force in the same column under a smaller axial load. Increas- 
ing the shear force magnitude increases the possibility of brit- 
tle shear failure. 

 

ELEMENT STIFFNESS MATRIX 

The elastic, spread plastic, interface bond-slip, and shear 
subelements are connected in series to form the member ele- 
ment (Fig. 1). If needed, additional sources of inelastic behav- 
ior can be added in separate subelements in the same manner. 
Since the constituent subelements are connected in series, the 
flexibility matrix of the member Fm can be obtained by simply 
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adding the flexibility matrices of the constituent subelements. 
Using the convention that upper case letters denote quantities 
associated with the member element while lower case letters 
denote quantities associated with the individual subelements,  
we obtain 

Fm  = fel  + fpl  + fibs  + fshr (9) 

The flexibility coefficients of fpl, fibs, and fshr change during the 
nonlinear response of the member, because of nonlinearities 
associated with the moment-curvature or moment-rotation re- 
lation and the change of the plastic zone length. Thus, fpl, fibs, 
and fshr in (9) represent the current tangent flexibility matrices 
of the spread plastic, the interface bond-slip, and the shear 
subelement, respectively. The flexibility matrix of the member 
element Fm is inverted to obtain the current stiffness matrix 
Km in local coordinates. After adding the geometric stiffness 
contribution and transforming the resulting stiffness matrix to 
global coordinates, the stiffness matrix K of the entire struc- 
tural model can be formed by direct assembly. Details of the 
process of element  state determination within the framework 
of an iterative nonlinear solution strategy are presented else- 
where (Filippou et al. 1992; Filippou et al. 1999). 

 

CORRELATION WITH EXPERIMENTAL RESULTS 

The proposed member model is implemented in a computer 
program for the nonlinear static and dynamic analysis of re- 
inforced concrete structures. To validate the shear subelement 
and its interaction with the other subelements, the program is 
used to simulate the hysteretic response of shear critical re- 
inforced concrete members and subassemblies under cyclic lat- 
eral loads. The selected specimens have a small span to depth 
ratio, so the effect of high shear plays an important role in the 
hysteretic response. The first specimen was designed  and 
tested by Celebi and Penzien (1973) to simulate reinforced 
concrete beams under the combined action of bending moment 
and shear. The second specimen was designed and tested by 
Atalay and Penzien (1975) to simulate reinforced concrete col- 
umns under the combined action of bending moment, shear, 
and axial load. The third specimen in the correlation studies 
was a 1/2.5 scale model of a RC bridge pier and was tested 
at the European Laboratory for Structural Assessment in Ispra, 
Italy (Pinto et al. 1995). 

Celebi and Penzien (1973) tested a series of beams with 
different span to depth ratios. The selected specimen carried 
the designation of 12 and had a span to depth ratio of 2.3. 
Atalay and Penzien (1975) tested a series of columns with 
different span to depth ratios and constant axial force. The 
selected specimen carried the designation of 3 and was sub- 
jected to an axial force of 267 kN. The design of both speci- 
mens satisfied the general requirements of Appendix A of the 
1971 ACI Code ‘‘Special Provisions for Seismic Design.’’ The 
test setup for both specimens was the same, except for the 
application of axial force in the series by Atalay and Penzien 
(1975). A single concentrated lateral load was applied at mid- 
span of both specimens. The load history of the specimens 
was similar, as shown in Figs. 4 and 5, except for the mag- 
nitude of the imposed lateral displacement. The load history 
of the Ispra specimen consisted of lateral displacement cycles 
with increasing amplitude (1, 2, 4, 6, 8, and 10 mm), followed 
by three cycles at a displacement ductility of 1.5 (18 mm), 
three cycles at a displacement ductility of 3 (36 mm), and, 

finally, three cycles at a displacement ductility of 6 (72 mm). 
The analytical model for the simulation of the hysteretic 

behavior of these specimens consists of frame elements made 
up of  an  elastic,  a spread  plastic, an interface bond-slip, and 

a shear subelement with the exception of the Ispra specimen, 
where a concentrated plastic element was used for flexure and 
the interface bond-slip element was not activated, as reinforc- 

ing bar pull-out was not significant in the squat bridge pier. 
The parameters of the constituent subelements are derived 
from the material and geometric properties of the specimens. 
With the measured stress strain relations of concrete and re- 
inforcing steel, the section geometry, and the reinforcement 
layout, the monotonic moment-curvature relation of a typical 
member section can be established with well known principles 
of reinforced concrete analysis. The parameters for the elastic 
and spread plastic subelement are determined from the mo- 
ment-curvature envelope of the member end section. The pa- 
rameters of the interface bond-slip subelement are determined 
from the monotonic moment-fixed end rotation envelope. This 

 

FIG. 4. Load History of Specimen 12 by Celebi and Benzien 
(1973) 

 

FIG. 5. Load History of Specimen 3 by Atalay and Penzien 
(1975) 

 

FIG. 6. Shear Force-Deformation Relation by Modified Com- 
pression Field Theory of Squat Bridge Pier Specimen by Pinto 
et al. (1995) 
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TABLE  1.   Model Parameters for Specimen 12 by Celebi and Penzien (1973) 
 

 

Moments 

(kN-m) 

(1) 

Moment-Curvature Relation Interface Moment-Rotation Relation Shear Force Distortion Relation 

Initial stiffness 

(103 kN∙m2/rad) 

(2) 

Strain hardening 

ratio 

(3) 

Initial stiffness 

(103 kN∙m2/rad) 

(4) 

Strain hardening 

ratio 

(5) 

Initial stiffness 

(103 kN∙m2/rad) 

(6) 

Strain hardening 

ratio 

(7) 

Mcr = 28       

M + = 88 7.8 0.017 28 0.04 94 0.035 

M — = 85 7.8 0.017 28 0.04 94 0.035 

 
TABLE  2.   Model Parameters for Specimen 12 by Atalay and Penzien (1975) 

 

Moments 

(kN-m) 

(1) 

Moment-Curvature Relation Interface Moment-Rotation Relation Shear Force Distortion Relation 

Initial stiffness 

(103 kN∙m2/rad) 

(2) 

Strain hardening 

ratio 

(3) 

Initial stiffness 

(103 kN∙m2/rad) 

(4) 

Strain hardening 

ratio 

(5) 

Initial stiffness 

(103 kN∙m2/rad) 

(6) 

Strain hardening 

ratio 

(7) 

Mcr = 34       

M + = 103 11.4 0.02 17 0.04 71 0.025 

M —  = 101 11.4 0.02 17 0.04 71 0.025 

 
TABLE  3.  Model Parameters for Squat Bridge Pier Specimen by Pinto et al. (1995) 

 

Moments 

(kN-m) 

(1) 

Moment-Curvature Relation Interface Moment-Rotation Relation Shear Force Distortion Relation 

Initial stiffness 

(103 kN∙m2/rad) 

(2) 

Strain hardening 

ratio 

(3) 

Initial stiffness 

(103 kN∙m2/rad) 

(4) 

Strain hardening 

ratio 

(5) 

Initial stiffness 

(103 kN∙m2/rad) 

(6) 

Strain hardening 

ratio 

(7) 

Mcr =  –         

M + = 3,640 1,380 0.03 Not included Not included 360 0.012 

M —  = 3,640 1,380 0.003 Not included Not included 360 0.012 

 

FIG. 7. Lateral Load-Displacement Relation of Specimen 12 
by Celebi and Benzien (1973) 

FIG. 8. Lateral Load-Displacement Relation of Specimen 3 by 
Atalay and Penzien (1975) 

 

envelope can be established from a simplified analysis of pull- 
out deformations under the assumption of a uniform bond 
stress distribution in the anchorage zone of the reinforcing bars 
and with due account of the bond damage in the cover of the 
member into which the bars are anchored. These calculations 
are presented in Appendix A of EERC Report 92-08 (Filippou 
et al. 1992). The parameters of the shear force deformation 
relation are established with the modified compression field 
theory (Vecchio and Collins 1986). The resulting shear force- 
distortion relation of the Ispra specimen is shown in Fig. 6. 
The parameters of the different subelements for these speci- 
mens are listed in Tables 1 – 3. 

Fig. 7 shows the experimental and analytical lateral load- 
displacement relation of specimen 12 by Celebi and Penzien 
(1973). Fig. 8 shows the correlation of the lateral load-dis- 
placement relation for the specimen 3 by Atalay and Penzien 
(1975). Finally, Figs. 9 and 10 show the lateral load-displace- 
ment relation and the local shear force-distortion relation, re- 
spectively, of the Ispra specimen by A. V. Pinto et al. (1995). 

A careful study of the results leads to the following conclu- 
sions: 

 

1. Excellent agreement between analytical and experimental 
results in generally observed. 

2. The shear subelement can accurately model the shear ef- 
fects in the postyield range of response of reinforced 
concrete girders. 

3. The pinching of the hysteretic behavior of the girder 
caused by the interaction of shear forces with the open- 
ing and closing of the cracks is simulated well by the 
analytical model. This effect is very important in short 
span members, as clear exhibited by the local shear 
force-distortion relation of the Ispra specimen and must 
be taken into account in order to accurately predict the 
energy dissipation of the member. 

4. The strength degradation is not very significant in the 
first two specimens, but is a bit more pronounced in the 
Ispra specimen with a shear span ratio of 1.75 in the 
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FIG. 9. Lateral Force-Displacement Relation of Squat Bridge 
Pier Specimen by Pinto et al. (1995) 

 

FIG. 10. Shear Force-Displacement Relation of Squat Bridge 
Pier Specimen by Pinto et al. (1995). 

 
post-yield cycles; in any case it is captured well by the 
proposed shear subelement. 

5. The preyield stiffness of the specimen is underestimated 
in the early  stages of loading, because the model does 
not take into account the stiffness change between the 
uncracked and cracked state. The model uses instead a 
secant pre-yield stiffness, since emphasis is placed on 
predicting the response of RC members under large cy- 
clic deformation reversals. A change to an appropriately 
defined trilinear envelope curve should be included in 
future versions of the model. 

 
It is particularly encouraging that the model can correctly 

identify the contributions of the individual deformation mech- 
anisms, as is evident in Fig. 10, which shows the correlation 
between the shear force-distortion relation for the squat bridge 
pier specimen of Ispra. The discrepancy in the negative direc- 
tion of loading in Fig. 10 raises doubts about the accuracy of 
the experimental data, as the lack of symmetry in the measured 
shear distortions is puzzling, particularly, in the early postyield 
cycles. 

 

 
 
 
 
 
 
 
 

 
 
CONCLUSIONS 

A new approach in describing the nonlinear hysteretic be- 
havior of reinforced concrete frame elements has been pro- 
posed. This approach consists of isolating the basic mechanisms 
controlling the hysteretic behavior of girders and columns into 
individual subelements that are connected in series to form the 
girder to column element. The proposed modeling approach 
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