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Abstract 
Due to the promises of cost effectiveness, 

availability, and on-demand scaling, cloud services are 

expanding quickly. Cloud service providers pool their 

physical resources to provide cloud platform multi-

tenancy in order to deliver on these commitments. Users 

are hesitant to offload critical data into the cloud, 

though, because of the prospect of doing so with 

possible attackers. Even worse, researchers have shown 

how side channel attacks using shared memory caches 

may be used to crack complete AES, DES, and RSA 

encryption keys. We introduce STEALTHMEM, a 

system-level defence against side channel attacks using 

caching on the cloud. Each VM can load its own 

sensitive data into the locked cache lines thanks to the 

effective multiplexing provided by STEALTHMEM, 

which handles a set of locked cache lines per core that 

are never removed from the cache. As a result, every 

VM can conceal from other VMs the memory access 

patterns on confidential data. STEALTHMEM works 

with existing commodity hardware and does not 

necessitate significant changes to application software, 

in contrast to current state-of-the-art mitigation 

techniques. We also offer a novel concept and prototype 

for completely utilising memory while separating cache 

lines by employing set-associative caches' architectural 

features. On the SPEC 2006 CPU benchmark, 

STEALTHMEM adds 5.9% performance overhead, and 

between them. 
1 Introduction 

Cloud services like Amazon‘s Elastic Compute Cloud 

(EC2) [5] and Microsoft‘s Azure Service Platform 

(Azure) [26] are rapidly gaining adoption because they of- 

fer cost-efficient, scalable and highly available computing 

services to their users. These benefits are made possible 

by sharing large-scale computing resources among a large 

number of users. However, security and privacy concerns 

over off-loading sensitive data make many end-users, en- 

terprises and government organizations reluctant to adopt 

cloud services [18, 20, 25]. 

To offer cost reductions and efficiencies, cloud 

providers multiplex physical resources among multiple 

tenants of their cloud platforms. However, such sharing 

exposes multiple side channels that exist in commod- 

ity hardware and that may enable attacks even in the 

absence of software vulnerabilities. By exploiting side 

channels that arise from shared CPU caches, researchers 

have demonstrated attacks extracting encryption keys of 

popular cryptographic algorithms such as AES, DES, and 

RSA. Table 1 summarizes some of these attacks. 

Unfortunately, the problem is not limited to cryptog- 

raphy. Any algorithm whose memory access pattern de- 

pends on confidential information is at risk of leaking 

this information through cache-based side channels. For 

example, attackers can detect the existence of sshd and 

apache2 via a side channel that results from memory 

deduplication in the cloud [38]. 

There is a large body of work on countermeasures 

against cache-based side channel attacks. The main direc- 

tions include the design of new hardware [12, 23, 24, 41– 

43], application specific defense mechanisms [17, 28, 30, 

39] and compiler-based techniques [11]. Unfortunately, 

we see little evidence of general hardware-based defenses 

being adopted in mainstream processors. The remaining 

proposals often lack generality or have poor performance. 

We solve the problem by designing and implementing a 

system-level defense mechanism, called STEALTHMEM, 

against cache-based side channel attacks. The system (hy- 

pervisor or operating system) provides each user (virtual 

machine or application) with small amounts of memory 

that is largely free from cache-based side channels. We 

first design an efficient software method for locking the 

pages of a virtual machine (VM) into the shared cache, 

thus guaranteeing that they cannot be evicted by other 

VMs. Since different processor cores might be running 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018) 

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

84  

Type Enc. Year Attack description Victim machine Samples Crypt. key 

Active Time-driven [9] AES 2006 Final Round Analysis UP Pentium III 213.0 

218.9 

226.0 

220.0 

227.5 

Full 128-bit key 

Active Time-driven [30] AES 2005 Prime+Evict (Synchronous Attack) SMP Athlon 64 Full 128-bit key 

Active Time-driven [40] DES 2003 Prime+Evict (Synchronous Attack) UP Pentium III Full 56-bit key 

Passive Time-driven [4] AES 2007 Statistical Timing Attack (Remote) SMT Pentium 4 with HT Full 128-bit key 

Passive Time-driven [8] AES 2005 Statistical Timing Attack (Remote) UP Pentium III Full 128-bit key 

Trace-driven [14] AES 2011 Asynchronous Probe UP Pentium 4 M 26.6 

24.3 

23.9 

213.0 

- 

Full 128-bit key 

Trace-driven [29] AES 2007 Final Round Analysis UP Pentium III Full 128-bit key 

Trace-driven [3] AES 2006 First/Second Round Analysis - - Full 128-bit key 

Trace-driven [30] AES 2005 Prime+Probe (Synchronous Attack) SMP Pentium 4 with HT Full 128-bit key 

Trace-driven [32] RSA 2005 Asynchronous Probe SMT Xeon with HT 310-bit of 512-bit key 

Table 1: Overview of cache-based side channel attacks: UP, SMT and SMP stand for uniprocessor, simultaneous 

multithreading and symmetric multiprocessing, respectively. 

different VMs at the same time, we assign a set of locked 

cache lines to each core, and keep the pages of the cur- 

rently running VMs on those cache lines. Therefore each 

VM can use its own special pages to store sensitive data 

without revealing its usage patterns. Whenever a VM 

is scheduled, STEALTHMEM ensures the VM‘s special 

pages are loaded into the locked cache lines of the cur- 

rent core. Furthermore, we describe a method for locking 

pages without sacrificing utilization of cache and memory 

by exploiting an architectural property of caches (set asso- 

ciativity) and the cache replacement policy (pseudo-LRU) 

in commodity hardware. 

We apply this locking technique to the last level caches 

(LLC) of modern x64-based processors (usually the L2 

or L3 cache). These caches are particularly critical as 

they are typically shared among several cores, enabling 

one core to monitor the memory accesses of other cores. 

STEALTHMEM prevents this for the locked pages. The 

LLC is typically so large that the fraction of addresses 

that maps to a single cache line is very small, making 

it possible to set aside cache lines without introducing 

much overhead. In contrast, the L1 cache of a typical x64 

processor is not shared and spans only a single 4 kB page. 

Thus, we do not attempt to lock it. 

We use the term ―locking‖ in a conceptual sense. We 

have no hardware mechanism for locking cache lines on 

mass market x64 processors. Instead, we use a hypervi- 

sor to control memory mappings such that the protected 

memory addresses are guaranteed to stay in the cache, 

irrespective of the sequence of memory accesses made by 

software. While the cloud was our main motivation, our 

techniques are not limited to the cloud and can be used 

to defend against cache-based side channel attacks in a 

general setting. 

Our experiments show that our prototype of the idea on 

Windows Hyper-V efficiently mitigates cache-based side 

channel attacks. It imposes a 5.9% performance overhead 

on the SPEC 2006 CPU benchmark running with 6 VMs. 

We also adapted standard implementations of three com- 

mon block ciphers to take advantage of STEALTHMEM. 

The code changes amounted to 3 lines for Blowfish, 5 

lines for DES and 34 lines for AES. The overheads of the 

secured versions were 3% for DES, 2% for Blowfish and 

Table 2: Caches in a Xeon W3520 processor 

 

5% for AES. 

 
2 Background 

This section provides background on the systems 

STEALTHMEM is intended to protect, focusing on CPU 

caches and the channels through which cache information 

can be leaked. It also provides an overview of known 

cache-based side channel attacks. 

 
 System Model 

We target modern virtualized server systems. The hard- 

ware is a shared memory multiprocessor whose process- 

ing cores share a cache (usually the last level cache). The 

CPUs may support simultaneous multi-threading (Hyper- 

Threading). The system software includes a hypervisor 

that partitions the hardware resources among multiple 

tenants, running in separate virtual machines (VMs). The 

tenants are not trusted and may not trust each other. 

 
 Cache Structure 

The following short summary of caches is specific to typ- 

ical x64-based CPUs, which are the target of our work. 

The CPU maps physical memory addresses to cache ad- 

dresses (called cache indices) in n-byte aligned units. 

These units are called cache lines, and mapped physi- 

cal addresses are called pre-image sets of each cache line 

as in Figure 1. A typical value of n is 64. We call the 

number of possible cache indices the index range. We 

call the index range times the line size, the address range 

of the cache. 

On x64 systems, caches are typically set associative. 

Every cache index is backed by cache storage for some 

number w > 1 of cache lines. Thus, up to w different 

lines of memory that map to the same cache index can 

Level Shared Type Line size Assoc. Size 

L1 No Inst./Data 64 Bytes 4/8 32 kB/32 kB 

L2 No Unified 64 Bytes 8 256 kB 

L3 Yes Unified 64 Bytes 16 8 MB 
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Figure 1: Cache structure and terminology 

 

be retained in the cache simultaneously (see Figure 1). 

The number w is called the wayness or set associativity, 

and typical values are 8 and 16, as in Table 2. Since w 

cache lines have the same pre-image sets (correspondingly 

mapped physical memory), we refer to all w cache lines 

as a cache line set. 

CPUs typically implement a logical hierarchy of 

caches, called L1, L2 and L3 depending on where they 

are located. L1 is physically closest to CPU, so it is the 

fastest (about 4 cycles), but has the smallest capacity (e.g., 

32 kB). In multi-core architectures (e.g., Xeon), each 

core has its own L1 and backed L2 cache. The L3 cache, 

usually the last level cache, is the slowest (about 40 cy- 

cles) and largest cache (e.g., 8 MB). It is shared by all 

cores of a processor. The L3 is particularly interesting 

because it can be shared among virtual machines running 

concurrently on different cores. 

 
 Cache Properties 

This section lists two well-known properties of caches 

that our algorithms rely on. The first condition is the 

basis for our main algorithm. We will also describe an 

optimization that is possible if the cache has the second 

property. 

 
Inertia No cache line of a cache line set will be evicted 

unless there is an attempt to add another item to the cache 

line set. In other words, the current contents of each cache 

line set stay in the cache until an address is accessed that 

is not in the cache and that maps to the same cache line 

set. That is, cache lines are not spontaneously forgotten. 

The only exceptions are CPU instructions to flush the 

cache such as invd or wbinvd on x64 CPUs. However, 

such instructions are privileged and can be controlled by 

a trusted hypervisor. 

k-LRU Cache lines are typically evicted according to a 

pseudo-LRU cache replacement policy. Under an LRU 

replacement policy, the least recently used cache line is 

evicted, assuming that cache line is not likely to be uti- 

lized in the near future. Pseudo-LRU is an approximation 

to LRU which is cheaper to implement in hardware. We 

say that an associative cache has the k-LRU property if 

the replacement algorithm will never evict the k most re- 

cently used copies. The k is not officially documented by 

major CPU vendors and may also differ by micro archi- 

tectures and their implementations. We will perform an 

experiment to find the proper k for our Xeon W3520 in 

Section 5. 

 
 Leakage Channels 

This section summarizes the different ways in which in- 

formation can leak through caches (see Figure 2). These 

leakage channels form the basis for active time-driven 

attacks and trace-driven attacks that we will define in the 

next section. 

 
Preemptive scheduling An attacker‘s VM and a vic- 

tim‘s VM may share a single CPU core (and its cache). 

The system uses preemptive scheduling to switch the CPU 

between the different VMs. Upon each context switch 

from the victim to the attacker, the attacker can observe 

the cache state as the victim had left it. 

 
Hyper-Threading Hyper-Threading is a hardware tech- 

nology that allows multiple (typically two) hardware 

threads to run on a single CPU core. The threads share 

a number of CPU resources, including the ALU and all 

of the core‘s caches. This gives rise to a number of side 

channels, and scheduling potentially adversarial VMs on 

Hyper-Threading of the same core is generally considered 

to be unsafe. 

 
Multicore The attacker and the victim may be running 

concurrently on separate CPU cores with a shared L3 

cache. In this case, the attacker can try to probe the 

L3 cache for accesses by the victim while the victim is 

running. 

 
 Cache-based Side Channel Attacks 

In this section, we summarize and classify well-known 

cache-based side channel attacks. Following Page [31], 

we distinguish between time-driven and trace-driven 

cache attacks, based on the information that is leaked 

in the attacks. Furthermore, we classify time-driven at- 

tacks as passive or active, depending on the scope of the 

attacks. 
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Figure 2: Leakage channels in three VM settings—uniprocessor, Hyper-Threading and multicore architectures. Modern 

commodity multicore machines suffer from all of three types of cache-based side channels. The letters (I) and (D) 

indicate instruction-cache and data-cache, respectively. 
 

 Time-driven Cache Attacks 

The first class of attacks are time-driven cache attacks, 

also known as timing attacks. Memory access times de- 

pend on the state of the cache. This can result in measur- 

able differences in execution times for different inputs. 

Such timing differences could be converted into mean- 

ingful attacks such as inferring cryptographic keys. For 

example, the number of cache lines accessed by a block 

cipher during encryption may depend on the key and on 

the plaintext, resulting in differences in execution times. 

Such differences may allow an attacker to derive the key 

directly or to reduce the possible key space, making it pos- 

sible to extract the complete key within a feasible amount 

of time by brute force search. 

Depending on the location of the attacker, the time- 

driven cache attacks fall into two categories: passive and 

active attacks. A passive attacker has no direct access to 

the victim‘s machine. Thus the attacker cannot manipulate 

or probe the victim‘s cache directly. Furthermore, he does 

not have access to precise timers on the victim‘s machine. 

An active attacker, on the other hand, can run code on 

the same machine as the victim. Thus, the attacker can 

directly manipulate the cache on the victim‘s machine. 

He can also access precise timers on that machine. 

 
Passive time-driven cache attacks The time measure- 

ments in passive attacks are subject to two sources of 

noise. The initial state of the cache, which passive attack- 

ers cannot directly manipulate or observe, may influence 

the running time. Furthermore, since the victim‘s running 

time cannot be measured locally with a high precision 

timer, the measurement itself is subject to noise (e.g. due 

to network delays). Passive attacks, therefore, generally 

require more samples and try to reduce the noise by means 

of statistical methods. 

For example, Bernstein‘s AES attack [8] exploits the 

fact that the execution time of AES encryption varies 

with the number of cache misses caused by S-box table 

lookups during encryption. The indices of the S-box 

lookups depend on the cryptographic key and the plaintext 

chosen by the attacker. After measuring the execution 

times for a sufficiently large number of carefully chosen 

plaintexts, the attacker can infer the key after performing 

further offline analysis. 

 
Active time-driven cache attacks Active attackers can 

directly manipulate the cache state, and thus can induce 

collisions with the victim‘s cache lines. They can also 

measure the victim‘s running time directly using a high 

precision timer of the victim. This eliminates much of the 

noise faced by passive attackers, and makes active attacks 

more efficient. For example, Osvik et al. [30] describe an 

active timing attack on AES which can recover the com- 

plete 128-bit AES key from only 500,000 measurements. 

In contrast, Bernstein‘s passive timing attack required 

227.5 measurements. 

 
 Trace-driven Cache Attacks 

The second type of cache-based side channel attacks are 

trace-driven attacks. These attacks try to observe which 

cache lines the victim has accessed by probing and ma- 

nipulating the cache. Thus, like active timing attacks, 

trace-driven attacks require attackers to access the same 

machine as the victim. Given the additional information 

about access patterns of cache lines, trace-driven attacks 

have the potential of being more efficient and sophisticate 

than time-driven attacks. 

A typical attack strategy (Prime+Probe) is for the at- 

tacker to access certain memory addresses, thus filling the 

cache with its own memory contents (Prime). Later, the 

attacker measures the time required to access the same 

memory addresses again (Probe). A large access time 
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indicates a cache miss which, in turn, may indicate that 

the victim accessed a pre-image of the same cache line. 

Trace-driven attacks were considered harmful espe- 

cially with simultaneous multi-threading technologies, 

such as Hyper-Threading, that enable one CPU to exe- 

cute multiple hardware threads at the same time without 

a context switch. By exploiting the fact that both threads 

share the same processor resources, such as caches, Perci- 

val [32] experimentally demonstrated a trace-driven cache 

attack against RSA. The attacker‘s process monitoring L1 

activity of RSA encryption can easily distinguish the foot- 

prints of modular squaring and modular multiplications 

based on the Chinese Remainder Theorem, which is used 

by various RSA implementations to compute modular 

operations on the private key of RSA [32]. 

More severely, Neve [29] introduced another trace- 

driven attack even without requiring multi-threading tech- 

nologies. Within a single-threaded processor, Neve an- 

alyzed the last round of AES encryption with multiple 

footprints of the AES process. To gain a footprint, Neve‘s 

attack exploits the preemptive scheduling policy of com- 

modity operating systems. Gullasch et al. similarly used 

the Completely Fair Scheduler of Linux to extract full 

AES encryption keys. This is the first fully functional 

asynchronous attack in a real-world setting. 

More quantitative research on trace-driven cache-based 

side channel attacks was conducted by Osvik, Shamir 

and Tromer [30, 39]. They demonstrated two interesting 

AES attacks by analyzing the first and second round of 

AES. The first attack (Prime+Probe) was able to recover 

a complete 128-bit AES key after only 8,000 encryptions. 

The second attack is asynchronous and allows an attacker 

to recover parts of an AES key when the victim is run- 

ning concurrently on the same machine. The attack was 

applied to a Hyper-Threading processor. However, it is in 

principle also applicable to modern multicore CPUs with 

a shared last level cache. 

 
3 Threat Model and Goals 

With the move from private computing hardware toward 

cloud computing, the dangers of cache-based side chan- 

nels become more acute. The sharing of hardware re- 

sources, especially CPU caches, exposes cloud tenants 

to both active time-driven and trace-driven cache attacks 

by co-located attackers. Neither of these attack types is 

typically a concern in a private computing environment 

which does not admit arbitrary code of unknown origin. 

In contrast, passive time-driven attacks do not require 

the adversary to execute code on the victim‘s machine 

and thus apply equally to both environments. This class 

of attacks depends on the design, implementation, and 

behavior of the victim‘s algorithms. 

The goal of this paper is to reduce the exposure of cloud 

systems to cache-based side channels to that of private 

computing environments. This requires defenses against 

active time-driven and trace-driven attacks. 

We aim to design a practical system-level mechanism 

that provides such defenses. The design should be practi- 

cal in the sense that it is compatible with existing commod- 

ity server hardware. Furthermore, its impact on system 

performance should be minimal, and it should not require 

significant changes to tenant software. 

 

4 Design 

We have designed the STEALTHMEM system to meet the 

aforementioned goals. The high-level idea is to provide 

users with a limited amount of private memory that can be 

accessed as if caches were not shared with other tenants. 

We call this abstraction stealth memory [13]. Tenants can 

use stealth memory to store data, such as the S-boxes of 

block ciphers, that are known to be the target of cache- 

based side channel attacks. 

We describe our design and implementation for virtu- 

alized systems that are commonly used in public clouds. 

However, our design could also be applied to regular op- 

erating systems running directly on a physical machine. 

STEALTHMEM extends a hypervisor, such that each VM 

can access small amounts of memory whose cache lines 

are not shared. 

Let p be the maximum number of CPU cores that can 

share a cache. This number depends on the CPU model. 

However, it is generally a small constant, such as p = 4 

or p = 6. In particular, systems with larger numbers of 

processors typically consist of independent CPUs without 

shared caches among them. 

The hypervisor selects p pre-image sets arbitrarily and 

assigns one page (or a few pages) from each set to one of 

the cores such that any two cores that share a cache are 

assigned pages from different pre-image sets and such that 

no page is assigned to more than one core. These pages 

are the cores‘ stealth pages, and they will be exposed 

to virtual machines running on the cores. At boot or 

initialization time, the hypervisor sets up the page tables 

for each core, such that each stealth page is mapped only 

to the core to which it was assigned. We will call the p 

pre-image sets from which the stealth pages were chosen 

the collision sets of the stealth pages. 

Figure 3 shows an example of a CPU with four cores 

sharing an L3 cache. Thus, p = 4. STEALTHMEM would 

pick four pages from four different pre-image sets and set 

the page tables such that the i-th core has exclusive access 

to the i-th page. 

In the rest of this section, we will refine the design and 

describe how STEALTHMEM disables the three leakage 

channels of Section 2. 
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Figure 3: STEALTHMEM on a typical multicore machine: Each VM has its own stealth page. When a VM is scheduled 

on a core, the core will lock the VM‘s stealth page into the shared cache. In one version, the hypervisor will not use the 

collision sets in order to avoid cache collisions. 

 Context Switching 

In general, cores are not assigned exclusively to a single 

VM, but are time-shared among multiple VMs. STEALTH- 

MEM will save and restore stealth pages of VMs dur- 

ing context switches. In the notation of Figure 3, when 

VM5 is scheduled to a core currently executing VM4, 

the STEALTHMEM hypervisor will save the stealth pages 

of the core into VM4‘s context, and restore them from 

VM5‘s context. STEALTHMEM will thus ensure that all of 

VM4‘s stealth pages are removed from the cache and all of 

VM5‘s stealth pages are loaded into the cache. STEALTH- 

MEM performs this step at the very end of the context 

switch—right before control is transferred from VM4 to 

VM5. This way, all of VM5‘s stealth pages will be in the 

L1 cache (in addition to being in L2 and L3) when VM5 

starts executing. 

Guest operating systems can use the same technique to 

multiplex their stealth memory to an arbitrary number of 

applications. 

 

 
 Hyper-Threading 

In order to avoid asynchronous cache side channels be- 

tween hyperthreads on the same CPU core, STEALTH- 

MEM gang schedules them. In other words, the hyper- 

threads of a core are never simultaneously assigned to 

different VMs. Some widely used hypervisors such as 

Hyper-V already implement this policy. Given the tight 

coupling of hyperthreads through shared CPU compo- 

nents, it is hard to envision how the hyperthreads of a core 

could be simultaneously assigned to multiple VMs with- 

out giving rise to a multitude of side channels. Another 

option is to disable Hyper-Threading. 

 Multicore 

STEALTHMEM has to prevent an attacker running on one 

core from using the shared cache to gain information 

about the stealth memory accesses of a victim running 

concurrently on another core. For this purpose, STEALTH- 

MEM has to remove or tightly control access to any page 

that maps to the same cache lines as the stealth pages; 

i.e., to the p pre-image sets from which the stealth pages 

were originally chosen. We consider two options: a) 

STEALTHMEM makes these pages inaccessible and b) 

STEALTHMEM makes the pages available to VMs, but 

mediates access to them carefully. 

Under the first option, STEALTHMEM ensures at the 

hypervisor level that, beyond the stealth pages, no pages 

from the p pre-image sets from which the stealth pages 

were taken are mapped in the hardware page tables. Thus, 

these pages are not used and are physically inaccessible 

to any VM. There is no accessible page in the system 

that maps to the same cache lines as the stealth pages. 

Code running on one core cannot probe or manipulate 

the cache lines of another core‘s stealth page because it 

cannot access any page that maps to the same cache lines. 

The total amount of memory that is sacrificed in this 

way depends on the shared cache configuration of the 

processor. It is about 3% for all CPU models we have 

examined. For example, the Xeon W3520 of Table 2 has 

an 8 MB 16-way set associative L3 cache that is shared 

among 4 cores (p = 4). Dividing 8 MB by the wayness 

(16) and the page size (4096 bytes), yields 128 page- 

granular pre-image sets. Removing p = 4 of them corre- 

sponds to a memory overhead of 4/128 = 3.125%. The 

available shared cache is reduced by the same amount. 

One could consider the option of reducing the overhead 

by letting trusted system software (e.g. the hypervisor, 

or root partition) use the reserved pages, rather than not 
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assigning them to guest VMs. However, this would make 

it hard to argue about the security of the resulting system. 

For example, if the pages were used to store system code, 

one would have to ensure that attackers could not access 

the cache lines of stealth pages indirectly by causing the 

execution of certain system functions. 

 
 Page Table Alerts 

The second option is to use the memory from the p pre- 

image sets, but to carefully mediate access to them. This 

option eliminates the memory and cache overhead at the 

expense of maintenance cost. 

STEALTHMEM maintains the invariant that the stealth 

pages never leave the shared cache. The shared cache is 

w-way set associative. Intuitively, STEALTHMEM tries 

to reserve one of the w slots for the stealth cache line, 

while the remaining w 1 slots can be used by other 

pages. STEALTHMEM interposes itself on accesses that 

might cause stealth cache lines to be evicted by setting 

up the hardware page mappings for most of the colliding 

pages, such that attempts to access them result in page 

faults and, thus, invocation of the hypervisor. We call this 

mechanism a page table alert (PTA). 

Rather than simply not using the pre-image sets, the 

hypervisor maps all their pages to VMs like regular pages. 

However, the hypervisor sets up PTAs in the hardware 

page mappings for most of these pages. 

More precisely, the hypervisor ensures that there will 

never be more than w 1 pages (other than one stealth 

page) from any of the p pre-image sets without a PTA. 

The w 1 pages without PTAs are effectively a cache of 

pages that can be accessed directly without incurring the 

overhead of a PTA. 

At initialization, the hypervisor places a PTA on every 

page of each of the p pre-image sets. Upon a page fault, 

the handler in the hypervisor will determine if the page 

fault was caused by a PTA. If so, it will determine the 

pre-image set of the page that triggered the page fault 

and perform the following steps: (a) If the pre-image set 

already contains w 1 pages without a PTA then one of 

these pages is chosen (according to some replacement 

strategy), and a PTA is placed on it. (b) The hypervi- 

sor ensures that all cache lines of the stealth page and 

of the up to w    1 colliding pages without PTAs are in 

the cache. This can be done by accessing these cache 

lines—possibly repeatedly. On most modern processors, 

the hypervisor can verify that the lines are indeed in the 

cache by querying the CPU performance counters for the 

number of L3 cache misses that occurred while accessing 

the w pages. If this number is zero then all required lines 

are in the cache. (c) The hypervisor removes the PTA 

from the page that caused the page fault. (d) The hypervi- 

sor resumes execution of the virtual processor that caused 

the page fault. The hypervisor executes steps (b) and (c) 

atomically—preemption is disabled. 

The critical property of these steps is that all accesses 

to the w pages without PTAs will always hit the cache and, 

by the inertia property, not cause any cache evictions. Any 

accesses to other pages from the same pre-image set are 

guarded by PTAs and will be mediated by STEALTHMEM. 

In order to improve scalability, we maintain a separate 

set of PTAs for each group of p processors that share 

the cache. Steps (a) to (d) are performed only locally for 

the set of PTAs of the processor group that contains the 

processor on which the page fault occurred. Thus, only 

the local group of p processors needs to be involved in the 

TLB shootdown, and different processor groups can have 

different sets of pages on which the PTAs are disabled. 

This comes at the expense of additional memory for page 

tables. 

 
k-LRU If the CPU‘s cache replacement algorithm has 

the k-LRU property (see Section 2) for some k > 1, the 

following simplification is possible in step (b). Rather 

than loading the cache lines from all pages without PTAs 

from the pre-image set, STEALTHMEM only needs to 

access once each cache line of the stealth page. This 

reduces the overhead per PTA. 

Furthermore, the maximum number of pages without 

PTAs must now be set to k 1, which may be smaller 

than w 1. This may lead to more PTAs in this variant of 

the algorithm. 

The critical property of this variant of the algorithm is 

that, at any time, the only pages in the stealth page‘s pre- 

image set that could have been accessed more recently 

than the stealth page are the k 1 pages without PTAs. 

Thus, by the k-LRU property, the stealth page will never 

be evicted from the cache. Figure 4 illustrates this for 

k = 4. 

 
 Optimizations 

Our design to expose stealth pages to arbitrary numbers 

of VMs adds work to context switches. Early experiments 

showed that this overhead can be significant. We use the 

following optimizations to minimize this cost. 

We associate physical stealth pages with cores, rather 

than VMs, in order to minimize the need for shared data 

structures and the resulting lock contention. STEALTH- 

MEM virtualizes these physical stealth pages and exposes 

a (virtual) stealth page associated with each virtual pro- 

cessor of a guest. This requires copying the contents 

of a virtual processor‘s stealth page and acquiring inter- 

processor locks whenever the hypervisor‘s scheduler de- 

cides to move a virtual processor to a different core. This 

event, however, is relatively rare and costly in itself. Thus, 

the work we add is only a small fraction of the total cost. 
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Figure 4: Page table alerts on accessing pages 1, 2, 3, 4 and 1, which are the pre-images of the same cache line set. 

When getting a page fault on accessing page 4, STEALTHMEMPTA reloads the stealth page to lock its cache lines. The 

k-LRU policy (k = 4) guarantees that the stealth page will not be evicted from the cache. Extra page faults come from 

accessing PTA-guarded pages. Accessing the tracked cache lines (pages without PTAs) will not generate extra page 

faults and, thus, no extra performance penalty. 
 

With this optimization, each guest still has its own pri- 

vate stealth pages (one per virtual processor). A potential 

difficulty of this approach is that guest code sees different 

stealth pages, depending on which virtual processor it 

runs on. However, this problem is immaterial for the stan- 

dard application of STEALTHMEM, in which the stealth 

pages store S-box tables that never change. 

Furthermore, we use several optimizations to minimize 

the cost of copying stealth pages and flushing their cache 

lines during context switches. Rather than backing the 

contents of a core‘s stealth page to a regular VM context 

page, we give each VM a separate set of stealth pages. 

Each VM has its own stealth page from pre-image set i 

for core i. Thus, if a VM is preempted and later resumes 

execution on the same set of cores, it is only necessary to 

refresh the cache lines of its stealth pages. The contents 

of a stealth page only have to be saved and restored if a 

virtual processor moves to a different core. 

A frequent special case are transitions between a VM 

and the root partition. When a VM requires a service, 

such as access to the disk or the network, the root parti- 

tion needs to be invoked. After the requested service is 

complete, control is returned to the VM—typically on the 

same cores on which it was originally running. Thus, it is 

not necessary to copy the stealth page contents on either 

transition. Furthermore, since we do not assign stealth 

pages to the root partition, it is not even necessary to flush 

caches. 

 
 Extensions 

As long as the machine has sufficient memory, we do 

not use the pages from the collision sets. This will help 

STEALTHMEM to avoid the performance overhead of 

maintaining PTAs. If, at some point, the machine is 

short of memory, STEALTHMEM can start assigning PTA- 

guarded pages to VMs, making all memory accessible. 

STEALTHMEM can, in principle, provide more than 

one page of stealth memory per core. In order to ensure 

that stealth pages are not evicted from the cache, the 

number of stealth pages per core can be at most k 1 for 

variants that rely on the k-LRU property and at most w 1 

for other variants, where w is the wayness of the cache. 

 
 API 

VM level STEALTHMEM exposes stealth pages as ar- 

chitectural features of virtual processors. The guest oper- 

ating system can find out the physical address of a virtual 

processor‘s stealth page by making a hypercall, which is 

a common interface to communicate with the hypervisor. 

 
Application level Application code has to be modified 

in order to place critical data on stealth pages. STEALTH- 

MEM provides programmers with two simple APIs for 

requesting and releasing stealth memory as shown in Ta- 

ble 3: sm alloc() and sm free(). Programmers can pro- 

tect important data structures, such as the S-boxes of 

encryption algorithms, by requesting stealth memory and 

then copying the S-boxes to the allocated space. In Sec- 

tion 6, we will evaluate the API design by modifying 

popular cryptographic algorithms, such as DES, AES and 

Blowfish, in order to protect their S-boxes with STEALTH- 

MEM. 

 
5 Implementation 

We have implemented the STEALTHMEM design on Win- 

dows Server 2008 R2 using Hyper-V for virtualization. 

The STEALTHMEM implementation consists of 5,000 

lines of C code that we added to the Hyper-V hypervisor. 

We also added 500 lines of C code to the Windows boot 

loader modules (bootmgr and winloader). 
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void ∗ sm alloc(size t size) 
void sm free(void ∗ ptr) 

Description 

Allocate dynamic memory of size bytes and return a corresponding pointer 

Free allocated memory pointed to by the given pointer, ptr 

Table 3: APIs to allocate and free stealth memory 
 

STEALTHMEM exposes stealth pages to applications 

through a driver that runs in the VMs and that produces 

the user mode mappings necessary for sm alloc() and 

sm free(). We did not have to modify the guest operating 

system to use STEALTHMEM. 

We implemented two versions of STEALTHMEM. In 

the first implementation, Hyper-V makes the unused 

pages from the p pre-image sets inaccessible. We will 

refer to this implementation as STEALTHMEM. The sec- 

ond implementation maps those pages to VMs, but guards 

them with PTAs. We will explicitly call this version 

STEALTHMEMPTA. 

Hyper-V configures the hardware virtualization exten- 

sions to trap into the hypervisor when VM code executes 

invd instructions. We extended the handler to reload the 

stealth cache lines immediately after executing invd. We 

proceeded similarly with wbinvd. 

 

 

 Root Partition Isolation 

Hyper-V relies on Windows to boot the machine. First, 

Windows boots on the physical machine. Hyper-V is 

launched only after that. The Windows instance that 

booted the machine becomes the root partition (equiva- 

lent to dom0 in Xen). In general, by the time Hyper-V is 

launched, the root partition will be using physical pages 

from all pre-image sets. It would be hard or impossible 

to free up complete pre-image sets by evicting the root 

partition from selected physical pages. The reasons in- 

clude the use of large pages which span all pre-image sets 

or the use of pages by hardware devices that operate on 

physical addresses. 

We obtain pre-image sets that are not used by the sys- 

tem by marking all pages in these sets as bad pages in the 

boot configuration data using bcdedit. This causes the 

system to ignore these pages and cuts physical memory 

into many small chunks. We had to adapt the Windows 

boot loader to enable Windows to boot under this unusual 

memory configuration. 

As a result of this change there are no contiguous large 

(2 MB or 4 MB) pages on the machine. Both the Windows 

kernel and Hyper-V attempt to use large pages to improve 

performance. Large page mappings reduce the translation 

depth from virtual to physical addresses. Furthermore, 

they reduce pressure on the TLB. We will evaluate the 

impact of not using large pages on the performance of 

STEALTHMEM in Section 6). 

 k-LRU 

Major CPU vendors implement pseudo-LRU replacement 

policies as an approximation of the LRU policy [14]. 

However, this is neither officially documented nor ex- 

plicitly stated in CPU developer manuals [6, 16]. We 

conducted the following experiment to find a k value for 

which our target Xeon W3520 CPU has the k-LRU prop- 

erty. 

We selected a set of pages that mapped to the same 
cache lines. Then, we loaded one page into the L3 cache 
by reading the contents of the page. After that, we loaded 

k′ other pages of the same pre-image set. Then, we turned 
on the performance counter and checked L3 cache misses 

after reading the first page again. We ran this experiment 

in a device driver (ring0) on one core, while the other 
cores were spinning on a shared lock. Interrupts were 

disabled. We varied k′ from 1 to 16 (set associativity). 

We started seeing L3 misses at k′ = 15 and concluded that 
our CPU has the 14-LRU property. 

 
6 Evaluation 

We ask three questions to evaluate STEALTHMEM. First, 

how effective is STEALTHMEM against cache-based side 

channel attacks? Second, what is the performance over- 

head of STEALTHMEM and its characteristics? And fi- 

nally, how easy is it to adopt STEALTHMEM in existing 

applications? 

 
 Security 

 Basic Algorithm 

We consider the basic algorithm (without the optimiza- 

tions of Section 4.5) first. STEALTHMEM guarantees that 

all cache lines of stealth pages are always in the shared 

(L3) cache. In the version that makes colliding pages in- 

accessible, this is the case simply because on each group 

of cores that share a cache, the only accessible pages from 

the collision sets of the stealth pages are the stealth pages 

themselves. We load all stealth pages into the shared 

cache at initialization. Since Section 4.6 limits the num- 

ber of stealth pages per collision set to w 1 , this will 

result in all stealth pages being in the cache simultane- 

ously. It is impossible to generate collisions. Thus, by the 

inertia property, these cache lines will never be evicted. 

In the PTA version, it is theoretically possible for 

stealth cache lines to be evicted very briefly from the 
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cache during PTA handling while the w 1 colliding 

pages without PTAs are loaded into the cache. The stealth 

cache line would be reloaded immediately as part of the 

same operation, and the time outside the shared cache 

could be limited to one instruction by accessing the stealth 

cache line immediately after accessing a colliding line. 

 
Leakage channels This property together with other 

properties of STEALTHMEM prevents trace-driven and 

active time-driven attacks on stealth pages. We consider 

each of the three leakage channels in turn: 

Multicore: Attackers running concurrently on other 

cores cannot directly manipulate (prime) or probe stealth 

cache lines of the victim‘s core. This holds for the shared 

cache because, as observed above, all stealth lines always 

remain in the shared (L3) cache irrespective of the actions 

of victims or attackers. It also holds for the other caches 

(L1 and L2) because they are not shared. 

Time sharing: Attackers who time-share a core with a 

victim cannot directly manipulate or probe stealth cache 

lines either because we load all stealth cache lines into the 

cache (including L1 and L2) at the very end of a context 

switch. Thus, no matter what the adversary or the victim 

did before the context switch, all stealth lines will be in 

all caches after a context switch. Thus, direct priming and 

probing the cache should yield no information. 

Hyper-Threading: STEALTHMEM gang schedules hy- 

perthreads to prevent side channels across them. 

 
Limitations While STEALTHMEM locks stealth lines 

into the last level shared (L3) cache, it has no such con- 

trol over the upper level caches (L1 and L2) other than 

reloading stealth pages while context switching. Accord- 

ingly, STEALTHMEM cannot hide the timing differences 

coming out of L1 and L2 cache. Passive timing attacks 

may arise by exploiting the timing differences between 

L1 and L3 from a different VM. As stated earlier, passive 

timing attacks are not our focus since they are not a new 

threat that results from hardware sharing in the cloud. 

 
 Extensions and Optimizations 

Per-VM stealth pages Section 4.5 describes an opti- 

mization that maintains a separate set of per-core stealth 

pages for each VM. With this optimization, stealth cache 

lines are not guaranteed to stay in the shared cache perma- 

nently. However, by loading the stealth page contents into 

the cache at the end of context switches, STEALTHMEM 

guarantees that the contents of a VM‘s per-core stealth 

pages are reloaded in the shared cache, whenever the core 

executes the VM. Thus, the situation for attackers running 

concurrently on different cores is the same as for the basic 

algorithm. Our observations regarding context switches 

and Hyper-Threading also carry over directly. 

k-LRU In the PTA variant that relies on the k-LRU 

property, the stealth page is kept in the cache because at 

most k 1 colliding pages can be accessed without PTAs. 

Since STEALTHMEM accesses the stealth page at the end 

of every page fault that results in a PTA update, the stealth 

cache lines are always at least the k-least recently used 

lines in their associative set. Thus, on a CPU with the k-

LRU property, they will not be evicted. 

 
 Denial of Service 

VMs do not have to (and cannot) request or release stealth 

pages. Instead, STEALTHMEM provides every VM with 

its own set of stealth pages as part of the virtual machine 

interface. This set is fixed from the point of view of the 

VM. Accesses by a VM to its stealth pages do not affect 

other VMs. Thus, there should be no denial of service 

attacks involving stealth pages at the VM interface level. 

Guest operating systems running inside VMs may have 

to provide stealth pages to multiple processes. The details 

of this lie outside the scope of this paper. As noted above, 

the techniques used in STEALTHMEM can also be applied 

to operating systems. Operating systems that choose to 

follow the STEALTHMEM approach virtualize their VM- 

level stealth pages and provide a fixed independent set of 

stealth pages to each process. Again, this type of stealth 

memory should not give rise to denial of service attacks. 

The APIs of Table 3 would be merely convenient syntax 

for a process to obtain a pointer to its stealth pages. 

 
 Performance 

We have measured the performance of our STEALTHMEM 

implementation to assess the efficiency and practicality 

of STEALTHMEM. The experiments ran on an HP Z400 

workstation with a 2.67 GHz 4 core Intel Xeon W3520 

CPU with 16 GB of DDR3 RAM. The cores were running 

at 2.8 GHz. Each CPU core has a 32 kB 8-way L1 D- 

cache, a 32 kB 4-way L1 I-cache and a 256 kB 8-way L2 

cache. In addition, the four cores share an 8 MB 16-way 

L3 cache. The machine ran a 64-bit version of Windows 

Server 2008 R2 HPC Edition (no service pack). We con- 

figured the power settings to run the CPU always at full 

speed in order to reduce measurement noise. The virtual 

machines used in the experiments ran the 64-bit version 

of Windows 7 Enterprise Edition and had 2 GB of RAM. 

This was the recommended minimum amount of memory 

for running the SPEC 2006 CPU benchmark [37]. 

 
 Performance Overhead 

Our first goal was to estimate the overhead of STEALTH- 

MEM and STEALTHMEMPTA. We have measured exe- 

cution times for three configurations: Baseline—an un- 
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Benchmark Baseline Stealth Stealth PTA BaselineNLP 

 time st.dev. time st.dev. overhead time st.dev. overhead time st.dev. overhead 

perlbench 508 0.1% 537 0.3% 5.7% 538 0.5% 5.9% 532 0.5% 4.7% 

bzip2 610 2.0% 618 0.2% 1.3% 624 1.8% 2.3% 617 2.0% 1.1% 

gcc 430 0.1% 466 0.3% 8.4% 476 0.2% 10.7% 462 0.3% 7.4% 

milc 257 0.1% 289 0.7% 12.5% 298 0.5% 16.0% 284 1.6% 10.5% 

namd 498 0.0% 500 0.1% 0.4% 500 0.1% 0.4% 499 0.1% 0.2% 

dealII 478 0.1% 492 0.3% 2.9% 495 0.2% 3.6% 490 0.1% 2.5% 

soplex 361 1.9% 401 0.4% 11.1% 412 0.3% 14.1% 394 0.2% 9.1% 

povray 228 0.1% 229 0.6% 0.4% 229 0.1% 0.4% 228 0.2% 0.0% 

calculix 360 0.2% 366 0.3% 1.7% 366 0.3% 1.7% 363 0.8% 0.8% 

astar 454 0.1% 501 0.3% 10.4% 508 1.3% 11.9% 495 0.2% 9.0% 

wrf 307 1.9% 331 0.8% 7.8% 336 1.2% 9.4% 329 0.6% 7.2% 

sphinx3 602 0.1% 654 0.4% 8.6% 662 0.7% 10.0% 639 0.2% 6.1% 

xalancbmk 307 0.2% 324 0.2% 5.5% 329 0.3% 7.2% 321 0.0% 4.6% 

average  5.9% 7.2% 4.9% 

Table 4: Running time in seconds (time), error bound (st.dev.) and overhead on 13 SPEC2006 CPU benchmarks for 

Baseline, STEALTHMEM, STEALTHMEMPTA and BaselineNLP. 

modified version of Windows with an unmodified ver- 

sion of Hyper-V—and our respective implementations of 

STEALTHMEM and STEALTHMEMPTA. 

In the first experiment, we ran each configuration with 

two VMs. One VM ran the SPEC 2006 CPU bench- 

mark [37]. Another VM was idle. Table 4 displays the 

execution times for 13 applications from the SPEC bench- 

mark suite. We repeated each run ten times, obtaining 

ten samples for each time measurement. The running 

times in the table are the sample medians. The table also 

displays the sample standard deviation as a percentage 

of the sample average as an indication of the noise in the 

sample. The sample standard deviation is typically less 

than one percent of the sample average. 

The overhead of STEALTHMEM varies between close 

to zero for about one third of the SPEC applications 

and 12.5% for milc. The average overhead is 5.9%. As 

expected, the overhead of STEALTHMEMPTA (7.2%) is 

larger than that of STEALTHMEM because of the extra 

cost of handling PTA page faults. Server operators can 

choose either variant, depending on the memory usage of 

their servers. 

We also attempted to find the source of the overhead 

of STEALTHMEM. Possible sources are the cost of virtu- 

alizing stealth pages, the 3% reduction in the size of the 

available cache and the cost of not being able to use large 

pages. We repeated the experiment with a configuration 

that is identical to the Baseline configuration, except that 

it does not use large pages. It is labeled BaselineNLP (for 

‗no large pages‘) in Table 4. The overheads for Baseli- 

neNLP across the different SPEC applications correlate 

with the overheads of STEALTHMEM. The overhead due 

to not using large pages (4.9% on average) accounts for 

more than 80% of the overhead of STEALTHMEM. 

We constructed BaselineNLP using the same binaries 

as Baseline. However, at hypervisor startup, we disabled 

one Hyper-V function by using the debugger to overwrite 

its first instruction with a ret. This function is responsible 

for replacing regular mappings by large mappings in the 

extended page tables. Without it, Hyper-V will not use 

large page mappings irrespective of the actions of the root 

partition or other guests. 

 
 Comparison with Page Coloring 

Page coloring [33] isolates VMs from cache-related de- 

pendencies by partitioning physical memory pages among 

VMs such that no VM shares cache lines with any other 

VM. We modified one of the Hyper-V support drivers in 

the root partition (vid.sys) to assign physical memory to 

VMs accordingly. 

In this simple implementation of Page Coloring, the 

VMs still share cache lines with the root partition. The 

same holds for the system in [33]. In contrast, our 

STEALTHMEM implementation isolates stealth pages also 

from the root partition. While this difference makes the 

Page Coloring configuration less secure, it should work 

to its advantage in the performance comparison. 

The next experiment compares the overheads of 

STEALTHMEM and Page Coloring as the number of VMs 

increases. We ran BaselineNLP, STEALTHMEM and Page 

Coloring with between 2 and 7 VMs, running the SPEC 

workload in one VM and leaving the remaining VMs idle. 

The root partition is not included in the VM count. Again, 

each time measurement is the median of ten SPEC runs. 

The sample standard deviation was typically less than1% 

and in no case more than 2.5% of the sample mean. 

Figure 5 displays the overheads over BaselineNLP of 

STEALTHMEM (left) and Page Coloring (right) as a func- 

tion of the number of VMs. We chose to display the 

overhead over BaselineNLP, rather than Baseline, in or- 

der to eliminate the constant cost of not using large pages, 
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Figure 5: Overhead of STEALTHMEM (left) and Page Coloring (right) over BaselineNLP. The x-axis is the number of 

VMs. 
 

which affects STEALTHMEM and Page Coloring similarly. 

Using Baseline adds an application dependent constant to 

each curve. 

Overall, the overhead of STEALTHMEM is significantly 

smaller than the overhead of Page Coloring. The lat- 

ter grows with the number of VMs, as each VM gets a 

smaller fraction of the cache. In contrast, the overhead of 

STEALTHMEM remains largely constant as the number 

of VMs increases. 

Figure 5 also shows significant differences between 

the individual benchmarks. For eight benchmarks, Page 

Coloring shows a large and rising overhead. The most ex- 

treme case of this is sphinx3 with a maximum overhead of 

almost 50%. For four benchmarks, the overhead of Page 

Coloring is close to zero. Finally, the milc benchmark 

stands out, as Page Coloring runs it consistently faster 

than BaselineNLP and STEALTHMEM. 

These observations are roughly consistent with the 

cache sensitivity analysis of Jaleel [19]. The applications 

with low overhead (namd, povray and calculix) appear to 

have very small working sets that fit into the L3 cache of 

all configurations we used in the experiment (including 

Page Coloring with 7 VMs). For the eight benchmarks 

with higher overhead, the number of cache misses appears 

to be sensitive to lower cache sizes in the range covered 

by our Page Coloring experiment (8/7 MB to 8 MB). For 

the milc application, the data reported by Jaleel indicate 

a working set size of more than 64 MB. This suggests 

that milc may be thrashing the L3 cache as well as the 

TLB even when given the entire cache of the machine 

under BaselineNLP. The performance improvement under 

Page Coloring may be the result of the CPU being able 

to resolve certain events (such as page table walks) faster 

when a large part of the cache is not being thrashed by 

milc. 
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Figure 6: Running times of a micro-benchmark as a 

function of its working set size. 

 

 Overhead With Various Working Set Sizes 

The following experiment shows overhead as a function 

of working set size. Given the working set of an ap- 

plication, developers can estimate the expected perfor- 

mance overhead when they modify an application to use 

STEALTHMEM. 

In the experiment, we used a synthetic application that 

makes a large number of accesses to an array whose size 

we varied (the working set size). The working set size 

is the input to the application. It allocates an array of 

that size and reads memory from the array in a tight loop. 

The memory accesses start at offset zero and move up 

the array in a quasi-linear pattern of increasing the offset 

for the next read operation by 192 bytes (three cache line 

sizes) and reducing the following offset by 64 bytes (one 

cache line size). This is followed by another 192 byte 

increase and another 64 byte reduction etc. When the end 

of the array is reached, the process is repeated, starting 
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Figure 7: Overhead of STEALTHMEM as a function of 

the number of stealth pages 

 

again at offset zero. 

We ran the application for several configurations. In 

each case, we ran seven VMs. One VM was running 

our application. The remaining six VMs were idle. We 

varied the working set sizes from 100 kB to 12.5 MB and 

measured for each run the time needed by the application 

to make three billion memory accesses. The results are 

displayed in Figure 6. The time measurements in the 

figure are the medians over five runs. The sample standard 

deviations were less than 0.5% of the sample means for 

most working set sizes. However, where the slope of 

a curve was very steep, the sample standard deviations 

could be up to 5% of the sample means. 

Most configurations show a sharp rise in the running 

times as the working set size increases past the size of the 

L3 cache (8 MB). For Page Coloring, this jump occurs for 

much smaller working sets since the VM can access only 

one seventh of the CPU‘s cache. Most configurations also 

display a second, smaller increase around 2 MB. This 

may be the result of TLB misses. The processor‘s L2 

TLB has 512 entries which can address up to 2 MB based 

on regular 4 kB page mappings. 

For very large workload sizes, BaselineNLP and 

STEALTHMEM become slower than Page Coloring. This 

appears to be the same phenomenon that caused Page 

Coloring to outperform BaselineNLP and STEALTHMEM 

on the milc benchmark. 

 
 Overhead With Various Stealth Pages 

This experiment attempts to estimate how the overhead 

of STEALTHMEM depends on the number of stealth 

pages that the hypervisor provides to each VM. We ran 

STEALTHMEM with one VM running the SPEC bench- 

marks and varied the number of stealth pages per VM. As 

before, the times we report are the medians over ten runs. 

The sample standard deviations were less than 0.4% of 

the sample means in all cases. 

Figure 7 displays the overhead with respect to 

STEALTHMEM with one stealth page per VM. There is no 

noticeable increase in the running time as the number of 

stealth pages increases. This is the result of the optimiza- 

tions described earlier that eliminate the need to copy the 

contents of stealth pages or to load them into the cache 

frequently. 

 

 
 Block Ciphers 

The goal of this experiment is to evaluate performance for 

real-world applications that heavily use stealth pages. We 

choose three popular block ciphers: AES [2], DES [1] and 

Blowfish [35]. Efficient implementations of each of these 

ciphers perform a number of lookups in a table during 

encryption and decryption. We picked Bruce Schneier‘s 

implementation of Blowfish [36], and standard commer- 

cial implementations of AES and DES and adapted them 

to use stealth pages (as described in Section 6.4). 

We measured the encryption speeds of each of the ci- 

phers for (a) the baseline configuration (unmodified Win- 

dows 7, Hyper-V and cipher implementation), (b) our 

STEALTHMEM configuration using the modified versions 

of the cipher implementations just described and (c) an 

uncached configuration, which places the S-box tables 

on a page that is not cached. Configuration (c) runs the 

modified version of the block cipher implementations on 

an unmodified version of Windows and an essentially un- 

modified version of the hypervisor. We added a driver in 

the Windows 7 guest that creates an uncached user mode 

mapping to a page. We also had to add one hypercall to 

Hyper-V to ensure that this page was indeed mapped as 

uncached in the physical page tables. We included this 

configuration in our experiments since using an uncached 

page is the simplest way to eliminate cache side channels. 

We measured the time required to encrypt 5 million 

bytes for each configuration. In order to reduce mea- 

surement noise, we raised the scheduling priority of the 

encryption process to the HIGH PRIORITY CLASS of 

the Windows scheduler. We ran the experiment in a small 

buffer configuration (50,000 byte buffer encrypted 1,000 

times) and a large buffer configuration (5 million byte 

buffer encrypted once) to show performance overheads 

with different workloads. 

The numbers in Table 5 are averaged over 1,000 runs. 

The sample standard deviation lies between 1 and 4 per- 

cent of the sample averages. The overhead of using a 

stealth page with respect to baseline performance lies be- 

tween 2% and 5%, while the overhead of the uncached 

version lies between 97.9% and 99.9%. 
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 A small buffer (50,000 bytes) A large buffer (5,000,000 bytes) 

Cipher Baseline Stealth Uncached Baseline Stealth Uncached 

DES 60 58 -3% 0.83 -99% 59 57 -3% 0.83 -99% 

AES 150 143 -5% 1.33 -99% 142 135 -5% 1.32 -99% 

Blowfish 77 75 -2% 1.65 -98% 75 74 -2% 1.64 -98% 

Table 5: Block cipher encryption speeds in MB/s for small and large buffers. We mapped the S-box of each encryption 

algorithm to cached, stealth and uncached pages. 
 

 

 
typedef unsigned long UlongArray[256]; 

static UlongArray *S; 

// in the initialization function 

S = sm alloc(4*256); 

Table 6: Modified Blowfish to use STEALTHMEM 

 
Encryption Size of S-box LoC Changes 

DES 256 B * 8 = 2 kB 5 lines 

AES 1024 B * 4 = 4 kB 34 lines 

Blowfish 1024 B * 4 = 4 kB 3 lines 

Table 7: Size of S-box in various encryption algorithms, 

and corresponding changes to use STEALTHMEM 

 

 Ease-of-use 

We had to make only minor changes to the block cipher 

implementations to adapt them to STEALTHMEM. These 

changes amounted to replacing the global array variables 

that hold the encryption tables by pointers to the stealth 

page. In the case of Blowfish, this change required only 

3 lines. We replaced the global array declaration by a 

pointer and assigned the base of the stealth page to it in 

the initialization function (see Table 6). 

Adapting DES required us to change a total of 5 lines. 

In addition to a change of the form just described, we had 

to copy the table contents (constants in the source code) 

to the stealth page. This was not necessary for Blowfish 

which read these data from a file. Adapting AES required 

a total of 34 lines. This large number is the result of the 

fact that our AES implementation declares its table as 8 

different variables, which forced us to repeat 8 times the 

simple adaptation we did for DES. Table 7 summarizes 

the S-box layouts and the required code changes for the 

three ciphers. 

 
7 Related Work 

Kocher [22] presented the initial idea of exploiting tim- 

ing differences to break popular cryptosystems. Even 

though Kocher speculated about the possibility of ex- 

ploiting cache side channels, the first theoretical model 

of cache attacks was described by Page [31] in 2002. 

Around that time, researchers started investigating cache- 

based side channels against actual cryptosystems and 

broke popular cryptosystems such as AES [4, 8, 9, 30], 

and DES [40]. With the emergence of simultaneous multi- 

threading, researchers discovered a new type of cache 

attacks, classified as trace-driven attacks in our paper, 

against AES [3, 30] and RSA [32] by exploiting the new 

architectural feature of an L1 cache that is shared by two 

hyperthreads. Recently, Osvik et al. [30, 39] executed 

more quantitative research on cache attacks and classified 

possible attack methods. The new cloud computing en- 

vironments have also gained the attention of researchers 

who have explored the possibility of cache-based side 

channel attacks in the cloud [7, 34, 44], or inversely their 

use in verifying co-residency of VMs [45]. 

Mitigation methods against cache attacks have been 

studied in three directions: suggesting new cache hard- 

ware with security in mind, designing software-only de- 

fense mechanism, and developing application specific 

mitigation methods. 

Hardware-based mitigation methods focus on reduc- 

ing or obfuscating cache accesses [23, 24, 41–43] by de- 

signing new caches, or partitioning caches with dynamic 

or other efficient methods [12, 21, 27, 42, 43]. Wang 

and Lee [42, 43] proposed PLcache to hide cache access 

patterns by locking cache lines, and RPcache to obfus- 

cate patterns by randomizing cache mappings. These 

hardware-based approaches, however, will not provide 

practical defenses until CPU makers integrate them into 

mainstream CPUs and cloud providers purchase them. 

Our defense mechanism not only provides similar secu- 

rity guarantee as these methods, but also allows cloud 

providers to utilize existing commodity hardware. 

Software-only defenses [7,11,13,15,33] also have been 

actively proposed. Against time-drive attacks, Coppens 

et al. [11] demonstrated a mitigation method by modi- 

fying a compiler to remove control-flow dependencies 

on confidential data, such as secret keys. This compiler 

technique, however, leaves applications still vulnerable 

to trace-driven cache attacks in the cloud. Against trace- 

driven attacks, static partitioning techniques, such as page 

coloring [33], provide a general mitigation solution by 

partitioning pre-image sets among VMs. Since static par- 

titioning divides the cache by the number of VMs, its 

performance overhead becomes significantly larger when 

cloud providers run more VMs, as we demonstrated in 

 Source code 

Original static unsigned long S[4][256]; 

 

Modified 
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Section 6. Our solution, however, assigns unique cache 

line sets to virtual processors and flexibly loads stealth 

pages of each VM if necessary, and thus demonstrates 

better performance. 

Erlingsson and Abadi [13] proposed the abstraction of 

―stealth memory‖ and sketched techniques for implement- 

ing it. We have realized the abstraction in a virtualized 

multiprocessor environment by designing and implement- 

ing a complete defense system against cache side channel 

attacks and evaluating it across system layers (from the 

hypervisor to cryptographic applications) in a concrete 

security model. 

Since existing hardware-based and software-only de- 

fenses are not practical because they require new CPU 

hardware or because of their performance overhead, 

researchers have been exploring mitigation methods 

for particular algorithms or applications.   The design 

and implementation of AES has been actively revisited 

by [8–10, 14, 30, 39], focusing on eliminating or control- 

ling access patterns on S-Boxes, or not placing S-Boxes 

into memory [28], but into registers of x64 CPUs. Re- 

cently, Intel [17] introduced a special instruction for AES 

encryption and decryption. These approaches may secure 

AES from cache side channels, but it is not realistic to 

introduce new CPU instructions for every software algo- 

rithm that might be subject to leaking information via 

cache side channels. In contrast, STEALTHMEM provides 

a general system-level protection solution that every ap- 

plication can take advantage of if it wants to protect its 

confidential data in the cloud. 

 
8 Conclusion 

We design and implement STEALTHMEM, a system-level 

protection mechanism against cache-based side channel 

attacks, specifically against active time-driven and trace- 

driven cache attacks, which cloud platforms suffer from. 

STEALTHMEM helps cloud service providers offer bet- 

ter security against cache attacks, without requiring any 

hardware modifications. 

With only a few lines of code changes, we can mod- 

ify popular encryption schemes such as AES, DES and 

Blowfish to use STEALTHMEM. Running the SPEC 2006 

CPU benchmark shows an overhead of 5.9%, and our 

micro-benchmark shows that the secured AES, DES, and 

Blowfish have between 2% and 5% performance over- 

head, while making extensive use of STEALTHMEM. 
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[28] MÜ LLER, T., DEWALD, A., AND  FREILING, F. C.  AESSE: a 

cold-boot resistant implementation of AES. In Proceedings of the 

Third European Workshop on System Security (2010), pp. 42–47. 

[29] NEVE, M., AND SEIFERT, J.-P. Advances on access-driven cache 

attacks on AES. In Selected Areas in Cryptography, vol. 4356. 

2007, pp. 147–162. 

[30] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks 

and countermeasures: the case of AES. In Topics in Cryptology - 

CT-RSA 2006, The Cryptographers Track at the RSA Conference 

2006 (2005), pp. 1–20. 

[31] PAGE, D. Theoretical use of cache memory as a cryptanalytic 

side-channel. Tech. Rep. CSTR-02-003, Department of Computer 

Science, University of Bristol, June 2002. 

[32] PERCIVAL, C. Cache missing for fun and profit. In BSDCan 2005 

(Ottawa, 2005). 

[33] RAJ, H., NATHUJI, R., SINGH, A., AND ENGLAND, P. Resource 

management for isolation enhanced cloud services. In Proceedings 

of the 2009 ACM Cloud Computing Security Workshop (2009), 

pp. 77–84. 

[34] RISTENPART, T., TROMER, E., SHACHAM, H., AND  SAVAGE, 

S. Hey, you, get off of my cloud: exploring information leakage 

in third-party compute clouds. In Proceedings of the 16th ACM 

Conference on Computer and Communications Security (2009), 

pp. 199–212. 

[35] SCHNEIER, B. The Blowfish encryption algorithm. http://www. 
schneier.com/blowfish.html. 

[36] SCHNEIER, B. The Blowfish source code. http://www. 
schneier.com/blowfish-download.html. 

[37] (SPEC), S. P. E. C. The SPEC CPU 2006 Benchmark Suite. 

http://www.specbench.org. 

[38] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Memory 

deduplication as a threat to the guest OS. In Proceedings of the 

Fourth European Workshop on System Security (EUROSEC ’11) 

(2011), pp. 1:1–1:6. 

[39] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache 

attacks on AES, and countermeasures. Journal of Cryptology 23, 

2 (2010), 37–71. 

[40] TSUNOO, Y., SAITO, T., SUZAKI, T., AND SHIGERI, M. Crypt- 

analysis of DES implemented on computers with cache. In Pro- 

ceedings of the 2003 Cryptographic Hardware and Embedded 

Systems (2003), pp. 62–76. 

[41] WANG, Z., AND   LEE, R. B.   Covert and side channels due 

to processor architecture. In Proceedings of the 22nd Annual 

Computer Security Applications Conference (December 2006), 

pp. 473 –482. 

[42] WANG, Z., AND LEE, R. B. New cache designs for thwarting 

software cache-based side channel attacks. In Proceedings of the 

34th International Symposium on Computer Architecture (2007), 

pp. 494–505. 

[43] WANG, Z., AND LEE, R. B. A novel cache architecture with 

enhanced performance and security. In Proceedings of the 41st 

annual IEEE/ACM International Symposium on Microarchitecture 

(2008), pp. 83–93. 

[44] XU, Y., BAILEY, M., JAHANIAN, F., JOSHI, K., HILTUNEN, 

M., AND SCHLICHTING, R. An exploration of L2 cache covert 

channels in virtualized environments. In Proceedings of the 2011 

ACM Cloud Computing Security Workshop (2011), pp. 29–40. 

[45] ZHANG, Y., JUELS, A., OPREA, A., AND REITER, M. K. Home- 

Alone: Co-residency detection in the cloud via side-channel analy- 

sis. In Proceedings of the 2011 IEEE Symposium on Security and 

Privacy (2011), pp. 313–328. 

http://tech.fortune.cnn.com/2010/09/24/
http://www.microsoft.com/azure/
http://www/
http://www/
http://www.specbench.org/

