
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

83

Security against Cache-Based Side Channel Attacks in the Cloud at the

System Level

Dr.Sachinandan Mohanty

1
*, Dr. Nagarjuna

2

1
*Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

sachinandanmohanty@thenalanda.com*, nagarjuna@thenalanda.com

Abstract
Due to the promises of cost effectiveness,

availability, and on-demand scaling, cloud services are

expanding quickly. Cloud service providers pool their

physical resources to provide cloud platform multi-

tenancy in order to deliver on these commitments. Users

are hesitant to offload critical data into the cloud,

though, because of the prospect of doing so with

possible attackers. Even worse, researchers have shown

how side channel attacks using shared memory caches

may be used to crack complete AES, DES, and RSA

encryption keys. We introduce STEALTHMEM, a

system-level defence against side channel attacks using

caching on the cloud. Each VM can load its own

sensitive data into the locked cache lines thanks to the

effective multiplexing provided by STEALTHMEM,

which handles a set of locked cache lines per core that

are never removed from the cache. As a result, every

VM can conceal from other VMs the memory access

patterns on confidential data. STEALTHMEM works

with existing commodity hardware and does not

necessitate significant changes to application software,

in contrast to current state-of-the-art mitigation

techniques. We also offer a novel concept and prototype

for completely utilising memory while separating cache

lines by employing set-associative caches' architectural

features. On the SPEC 2006 CPU benchmark,

STEALTHMEM adds 5.9% performance overhead, and

between them.
1 Introduction

Cloud services like Amazon‘s Elastic Compute Cloud

(EC2) [5] and Microsoft‘s Azure Service Platform

(Azure) [26] are rapidly gaining adoption because they of-

fer cost-efficient, scalable and highly available computing

services to their users. These benefits are made possible

by sharing large-scale computing resources among a large

number of users. However, security and privacy concerns

over off-loading sensitive data make many end-users, en-

terprises and government organizations reluctant to adopt

cloud services [18, 20, 25].

To offer cost reductions and efficiencies, cloud

providers multiplex physical resources among multiple

tenants of their cloud platforms. However, such sharing

exposes multiple side channels that exist in commod-

ity hardware and that may enable attacks even in the

absence of software vulnerabilities. By exploiting side

channels that arise from shared CPU caches, researchers

have demonstrated attacks extracting encryption keys of

popular cryptographic algorithms such as AES, DES, and

RSA. Table 1 summarizes some of these attacks.

Unfortunately, the problem is not limited to cryptog-

raphy. Any algorithm whose memory access pattern de-

pends on confidential information is at risk of leaking

this information through cache-based side channels. For

example, attackers can detect the existence of sshd and

apache2 via a side channel that results from memory

deduplication in the cloud [38].

There is a large body of work on countermeasures

against cache-based side channel attacks. The main direc-

tions include the design of new hardware [12, 23, 24, 41–

43], application specific defense mechanisms [17, 28, 30,

39] and compiler-based techniques [11]. Unfortunately,

we see little evidence of general hardware-based defenses

being adopted in mainstream processors. The remaining

proposals often lack generality or have poor performance.

We solve the problem by designing and implementing a

system-level defense mechanism, called STEALTHMEM,

against cache-based side channel attacks. The system (hy-

pervisor or operating system) provides each user (virtual

machine or application) with small amounts of memory

that is largely free from cache-based side channels. We

first design an efficient software method for locking the

pages of a virtual machine (VM) into the shared cache,

thus guaranteeing that they cannot be evicted by other

VMs. Since different processor cores might be running

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

84

Type Enc. Year Attack description Victim machine Samples Crypt. key

Active Time-driven [9] AES 2006 Final Round Analysis UP Pentium III 213.0

218.9

226.0

220.0

227.5

Full 128-bit key

Active Time-driven [30] AES 2005 Prime+Evict (Synchronous Attack) SMP Athlon 64 Full 128-bit key

Active Time-driven [40] DES 2003 Prime+Evict (Synchronous Attack) UP Pentium III Full 56-bit key

Passive Time-driven [4] AES 2007 Statistical Timing Attack (Remote) SMT Pentium 4 with HT Full 128-bit key

Passive Time-driven [8] AES 2005 Statistical Timing Attack (Remote) UP Pentium III Full 128-bit key

Trace-driven [14] AES 2011 Asynchronous Probe UP Pentium 4 M 26.6

24.3

23.9

213.0

-

Full 128-bit key

Trace-driven [29] AES 2007 Final Round Analysis UP Pentium III Full 128-bit key

Trace-driven [3] AES 2006 First/Second Round Analysis - - Full 128-bit key

Trace-driven [30] AES 2005 Prime+Probe (Synchronous Attack) SMP Pentium 4 with HT Full 128-bit key

Trace-driven [32] RSA 2005 Asynchronous Probe SMT Xeon with HT 310-bit of 512-bit key

Table 1: Overview of cache-based side channel attacks: UP, SMT and SMP stand for uniprocessor, simultaneous

multithreading and symmetric multiprocessing, respectively.

different VMs at the same time, we assign a set of locked

cache lines to each core, and keep the pages of the cur-

rently running VMs on those cache lines. Therefore each

VM can use its own special pages to store sensitive data

without revealing its usage patterns. Whenever a VM

is scheduled, STEALTHMEM ensures the VM‘s special

pages are loaded into the locked cache lines of the cur-

rent core. Furthermore, we describe a method for locking

pages without sacrificing utilization of cache and memory

by exploiting an architectural property of caches (set asso-

ciativity) and the cache replacement policy (pseudo-LRU)

in commodity hardware.

We apply this locking technique to the last level caches

(LLC) of modern x64-based processors (usually the L2

or L3 cache). These caches are particularly critical as

they are typically shared among several cores, enabling

one core to monitor the memory accesses of other cores.

STEALTHMEM prevents this for the locked pages. The

LLC is typically so large that the fraction of addresses

that maps to a single cache line is very small, making

it possible to set aside cache lines without introducing

much overhead. In contrast, the L1 cache of a typical x64

processor is not shared and spans only a single 4 kB page.

Thus, we do not attempt to lock it.

We use the term ―locking‖ in a conceptual sense. We

have no hardware mechanism for locking cache lines on

mass market x64 processors. Instead, we use a hypervi-

sor to control memory mappings such that the protected

memory addresses are guaranteed to stay in the cache,

irrespective of the sequence of memory accesses made by

software. While the cloud was our main motivation, our

techniques are not limited to the cloud and can be used

to defend against cache-based side channel attacks in a

general setting.

Our experiments show that our prototype of the idea on

Windows Hyper-V efficiently mitigates cache-based side

channel attacks. It imposes a 5.9% performance overhead

on the SPEC 2006 CPU benchmark running with 6 VMs.

We also adapted standard implementations of three com-

mon block ciphers to take advantage of STEALTHMEM.

The code changes amounted to 3 lines for Blowfish, 5

lines for DES and 34 lines for AES. The overheads of the

secured versions were 3% for DES, 2% for Blowfish and

Table 2: Caches in a Xeon W3520 processor

5% for AES.

2 Background

This section provides background on the systems

STEALTHMEM is intended to protect, focusing on CPU

caches and the channels through which cache information

can be leaked. It also provides an overview of known

cache-based side channel attacks.

 System Model

We target modern virtualized server systems. The hard-

ware is a shared memory multiprocessor whose process-

ing cores share a cache (usually the last level cache). The

CPUs may support simultaneous multi-threading (Hyper-

Threading). The system software includes a hypervisor

that partitions the hardware resources among multiple

tenants, running in separate virtual machines (VMs). The

tenants are not trusted and may not trust each other.

 Cache Structure

The following short summary of caches is specific to typ-

ical x64-based CPUs, which are the target of our work.

The CPU maps physical memory addresses to cache ad-

dresses (called cache indices) in n-byte aligned units.

These units are called cache lines, and mapped physi-

cal addresses are called pre-image sets of each cache line

as in Figure 1. A typical value of n is 64. We call the

number of possible cache indices the index range. We

call the index range times the line size, the address range

of the cache.

On x64 systems, caches are typically set associative.

Every cache index is backed by cache storage for some

number w > 1 of cache lines. Thus, up to w different

lines of memory that map to the same cache index can

Level Shared Type Line size Assoc. Size

L1 No Inst./Data 64 Bytes 4/8 32 kB/32 kB

L2 No Unified 64 Bytes 8 256 kB

L3 Yes Unified 64 Bytes 16 8 MB

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

85

Figure 1: Cache structure and terminology

be retained in the cache simultaneously (see Figure 1).

The number w is called the wayness or set associativity,

and typical values are 8 and 16, as in Table 2. Since w

cache lines have the same pre-image sets (correspondingly

mapped physical memory), we refer to all w cache lines

as a cache line set.

CPUs typically implement a logical hierarchy of

caches, called L1, L2 and L3 depending on where they

are located. L1 is physically closest to CPU, so it is the

fastest (about 4 cycles), but has the smallest capacity (e.g.,

32 kB). In multi-core architectures (e.g., Xeon), each

core has its own L1 and backed L2 cache. The L3 cache,

usually the last level cache, is the slowest (about 40 cy-

cles) and largest cache (e.g., 8 MB). It is shared by all

cores of a processor. The L3 is particularly interesting

because it can be shared among virtual machines running

concurrently on different cores.

 Cache Properties

This section lists two well-known properties of caches

that our algorithms rely on. The first condition is the

basis for our main algorithm. We will also describe an

optimization that is possible if the cache has the second

property.

Inertia No cache line of a cache line set will be evicted

unless there is an attempt to add another item to the cache

line set. In other words, the current contents of each cache

line set stay in the cache until an address is accessed that

is not in the cache and that maps to the same cache line

set. That is, cache lines are not spontaneously forgotten.

The only exceptions are CPU instructions to flush the

cache such as invd or wbinvd on x64 CPUs. However,

such instructions are privileged and can be controlled by

a trusted hypervisor.

k-LRU Cache lines are typically evicted according to a

pseudo-LRU cache replacement policy. Under an LRU

replacement policy, the least recently used cache line is

evicted, assuming that cache line is not likely to be uti-

lized in the near future. Pseudo-LRU is an approximation

to LRU which is cheaper to implement in hardware. We

say that an associative cache has the k-LRU property if

the replacement algorithm will never evict the k most re-

cently used copies. The k is not officially documented by

major CPU vendors and may also differ by micro archi-

tectures and their implementations. We will perform an

experiment to find the proper k for our Xeon W3520 in

Section 5.

 Leakage Channels

This section summarizes the different ways in which in-

formation can leak through caches (see Figure 2). These

leakage channels form the basis for active time-driven

attacks and trace-driven attacks that we will define in the

next section.

Preemptive scheduling An attacker‘s VM and a vic-

tim‘s VM may share a single CPU core (and its cache).

The system uses preemptive scheduling to switch the CPU

between the different VMs. Upon each context switch

from the victim to the attacker, the attacker can observe

the cache state as the victim had left it.

Hyper-Threading Hyper-Threading is a hardware tech-

nology that allows multiple (typically two) hardware

threads to run on a single CPU core. The threads share

a number of CPU resources, including the ALU and all

of the core‘s caches. This gives rise to a number of side

channels, and scheduling potentially adversarial VMs on

Hyper-Threading of the same core is generally considered

to be unsafe.

Multicore The attacker and the victim may be running

concurrently on separate CPU cores with a shared L3

cache. In this case, the attacker can try to probe the

L3 cache for accesses by the victim while the victim is

running.

 Cache-based Side Channel Attacks

In this section, we summarize and classify well-known

cache-based side channel attacks. Following Page [31],

we distinguish between time-driven and trace-driven

cache attacks, based on the information that is leaked

in the attacks. Furthermore, we classify time-driven at-

tacks as passive or active, depending on the scope of the

attacks.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

86

Figure 2: Leakage channels in three VM settings—uniprocessor, Hyper-Threading and multicore architectures. Modern

commodity multicore machines suffer from all of three types of cache-based side channels. The letters (I) and (D)

indicate instruction-cache and data-cache, respectively.

 Time-driven Cache Attacks

The first class of attacks are time-driven cache attacks,

also known as timing attacks. Memory access times de-

pend on the state of the cache. This can result in measur-

able differences in execution times for different inputs.

Such timing differences could be converted into mean-

ingful attacks such as inferring cryptographic keys. For

example, the number of cache lines accessed by a block

cipher during encryption may depend on the key and on

the plaintext, resulting in differences in execution times.

Such differences may allow an attacker to derive the key

directly or to reduce the possible key space, making it pos-

sible to extract the complete key within a feasible amount

of time by brute force search.

Depending on the location of the attacker, the time-

driven cache attacks fall into two categories: passive and

active attacks. A passive attacker has no direct access to

the victim‘s machine. Thus the attacker cannot manipulate

or probe the victim‘s cache directly. Furthermore, he does

not have access to precise timers on the victim‘s machine.

An active attacker, on the other hand, can run code on

the same machine as the victim. Thus, the attacker can

directly manipulate the cache on the victim‘s machine.

He can also access precise timers on that machine.

Passive time-driven cache attacks The time measure-

ments in passive attacks are subject to two sources of

noise. The initial state of the cache, which passive attack-

ers cannot directly manipulate or observe, may influence

the running time. Furthermore, since the victim‘s running

time cannot be measured locally with a high precision

timer, the measurement itself is subject to noise (e.g. due

to network delays). Passive attacks, therefore, generally

require more samples and try to reduce the noise by means

of statistical methods.

For example, Bernstein‘s AES attack [8] exploits the

fact that the execution time of AES encryption varies

with the number of cache misses caused by S-box table

lookups during encryption. The indices of the S-box

lookups depend on the cryptographic key and the plaintext

chosen by the attacker. After measuring the execution

times for a sufficiently large number of carefully chosen

plaintexts, the attacker can infer the key after performing

further offline analysis.

Active time-driven cache attacks Active attackers can

directly manipulate the cache state, and thus can induce

collisions with the victim‘s cache lines. They can also

measure the victim‘s running time directly using a high

precision timer of the victim. This eliminates much of the

noise faced by passive attackers, and makes active attacks

more efficient. For example, Osvik et al. [30] describe an

active timing attack on AES which can recover the com-

plete 128-bit AES key from only 500,000 measurements.

In contrast, Bernstein‘s passive timing attack required

227.5 measurements.

 Trace-driven Cache Attacks

The second type of cache-based side channel attacks are

trace-driven attacks. These attacks try to observe which

cache lines the victim has accessed by probing and ma-

nipulating the cache. Thus, like active timing attacks,

trace-driven attacks require attackers to access the same

machine as the victim. Given the additional information

about access patterns of cache lines, trace-driven attacks

have the potential of being more efficient and sophisticate

than time-driven attacks.

A typical attack strategy (Prime+Probe) is for the at-

tacker to access certain memory addresses, thus filling the

cache with its own memory contents (Prime). Later, the

attacker measures the time required to access the same

memory addresses again (Probe). A large access time

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

87

indicates a cache miss which, in turn, may indicate that

the victim accessed a pre-image of the same cache line.

Trace-driven attacks were considered harmful espe-

cially with simultaneous multi-threading technologies,

such as Hyper-Threading, that enable one CPU to exe-

cute multiple hardware threads at the same time without

a context switch. By exploiting the fact that both threads

share the same processor resources, such as caches, Perci-

val [32] experimentally demonstrated a trace-driven cache

attack against RSA. The attacker‘s process monitoring L1

activity of RSA encryption can easily distinguish the foot-

prints of modular squaring and modular multiplications

based on the Chinese Remainder Theorem, which is used

by various RSA implementations to compute modular

operations on the private key of RSA [32].

More severely, Neve [29] introduced another trace-

driven attack even without requiring multi-threading tech-

nologies. Within a single-threaded processor, Neve an-

alyzed the last round of AES encryption with multiple

footprints of the AES process. To gain a footprint, Neve‘s

attack exploits the preemptive scheduling policy of com-

modity operating systems. Gullasch et al. similarly used

the Completely Fair Scheduler of Linux to extract full

AES encryption keys. This is the first fully functional

asynchronous attack in a real-world setting.

More quantitative research on trace-driven cache-based

side channel attacks was conducted by Osvik, Shamir

and Tromer [30, 39]. They demonstrated two interesting

AES attacks by analyzing the first and second round of

AES. The first attack (Prime+Probe) was able to recover

a complete 128-bit AES key after only 8,000 encryptions.

The second attack is asynchronous and allows an attacker

to recover parts of an AES key when the victim is run-

ning concurrently on the same machine. The attack was

applied to a Hyper-Threading processor. However, it is in

principle also applicable to modern multicore CPUs with

a shared last level cache.

3 Threat Model and Goals

With the move from private computing hardware toward

cloud computing, the dangers of cache-based side chan-

nels become more acute. The sharing of hardware re-

sources, especially CPU caches, exposes cloud tenants

to both active time-driven and trace-driven cache attacks

by co-located attackers. Neither of these attack types is

typically a concern in a private computing environment

which does not admit arbitrary code of unknown origin.

In contrast, passive time-driven attacks do not require

the adversary to execute code on the victim‘s machine

and thus apply equally to both environments. This class

of attacks depends on the design, implementation, and

behavior of the victim‘s algorithms.

The goal of this paper is to reduce the exposure of cloud

systems to cache-based side channels to that of private

computing environments. This requires defenses against

active time-driven and trace-driven attacks.

We aim to design a practical system-level mechanism

that provides such defenses. The design should be practi-

cal in the sense that it is compatible with existing commod-

ity server hardware. Furthermore, its impact on system

performance should be minimal, and it should not require

significant changes to tenant software.

4 Design

We have designed the STEALTHMEM system to meet the

aforementioned goals. The high-level idea is to provide

users with a limited amount of private memory that can be

accessed as if caches were not shared with other tenants.

We call this abstraction stealth memory [13]. Tenants can

use stealth memory to store data, such as the S-boxes of

block ciphers, that are known to be the target of cache-

based side channel attacks.

We describe our design and implementation for virtu-

alized systems that are commonly used in public clouds.

However, our design could also be applied to regular op-

erating systems running directly on a physical machine.

STEALTHMEM extends a hypervisor, such that each VM

can access small amounts of memory whose cache lines

are not shared.

Let p be the maximum number of CPU cores that can

share a cache. This number depends on the CPU model.

However, it is generally a small constant, such as p = 4

or p = 6. In particular, systems with larger numbers of

processors typically consist of independent CPUs without

shared caches among them.

The hypervisor selects p pre-image sets arbitrarily and

assigns one page (or a few pages) from each set to one of

the cores such that any two cores that share a cache are

assigned pages from different pre-image sets and such that

no page is assigned to more than one core. These pages

are the cores‘ stealth pages, and they will be exposed

to virtual machines running on the cores. At boot or

initialization time, the hypervisor sets up the page tables

for each core, such that each stealth page is mapped only

to the core to which it was assigned. We will call the p

pre-image sets from which the stealth pages were chosen

the collision sets of the stealth pages.

Figure 3 shows an example of a CPU with four cores

sharing an L3 cache. Thus, p = 4. STEALTHMEM would

pick four pages from four different pre-image sets and set

the page tables such that the i-th core has exclusive access

to the i-th page.

In the rest of this section, we will refine the design and

describe how STEALTHMEM disables the three leakage

channels of Section 2.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

88

Figure 3: STEALTHMEM on a typical multicore machine: Each VM has its own stealth page. When a VM is scheduled

on a core, the core will lock the VM‘s stealth page into the shared cache. In one version, the hypervisor will not use the

collision sets in order to avoid cache collisions.

 Context Switching

In general, cores are not assigned exclusively to a single

VM, but are time-shared among multiple VMs. STEALTH-

MEM will save and restore stealth pages of VMs dur-

ing context switches. In the notation of Figure 3, when

VM5 is scheduled to a core currently executing VM4,

the STEALTHMEM hypervisor will save the stealth pages

of the core into VM4‘s context, and restore them from

VM5‘s context. STEALTHMEM will thus ensure that all of

VM4‘s stealth pages are removed from the cache and all of

VM5‘s stealth pages are loaded into the cache. STEALTH-

MEM performs this step at the very end of the context

switch—right before control is transferred from VM4 to

VM5. This way, all of VM5‘s stealth pages will be in the

L1 cache (in addition to being in L2 and L3) when VM5

starts executing.

Guest operating systems can use the same technique to

multiplex their stealth memory to an arbitrary number of

applications.

 Hyper-Threading

In order to avoid asynchronous cache side channels be-

tween hyperthreads on the same CPU core, STEALTH-

MEM gang schedules them. In other words, the hyper-

threads of a core are never simultaneously assigned to

different VMs. Some widely used hypervisors such as

Hyper-V already implement this policy. Given the tight

coupling of hyperthreads through shared CPU compo-

nents, it is hard to envision how the hyperthreads of a core

could be simultaneously assigned to multiple VMs with-

out giving rise to a multitude of side channels. Another

option is to disable Hyper-Threading.

 Multicore

STEALTHMEM has to prevent an attacker running on one

core from using the shared cache to gain information

about the stealth memory accesses of a victim running

concurrently on another core. For this purpose, STEALTH-

MEM has to remove or tightly control access to any page

that maps to the same cache lines as the stealth pages;

i.e., to the p pre-image sets from which the stealth pages

were originally chosen. We consider two options: a)

STEALTHMEM makes these pages inaccessible and b)

STEALTHMEM makes the pages available to VMs, but

mediates access to them carefully.

Under the first option, STEALTHMEM ensures at the

hypervisor level that, beyond the stealth pages, no pages

from the p pre-image sets from which the stealth pages

were taken are mapped in the hardware page tables. Thus,

these pages are not used and are physically inaccessible

to any VM. There is no accessible page in the system

that maps to the same cache lines as the stealth pages.

Code running on one core cannot probe or manipulate

the cache lines of another core‘s stealth page because it

cannot access any page that maps to the same cache lines.

The total amount of memory that is sacrificed in this

way depends on the shared cache configuration of the

processor. It is about 3% for all CPU models we have

examined. For example, the Xeon W3520 of Table 2 has

an 8 MB 16-way set associative L3 cache that is shared

among 4 cores (p = 4). Dividing 8 MB by the wayness

(16) and the page size (4096 bytes), yields 128 page-

granular pre-image sets. Removing p = 4 of them corre-

sponds to a memory overhead of 4/128 = 3.125%. The

available shared cache is reduced by the same amount.

One could consider the option of reducing the overhead

by letting trusted system software (e.g. the hypervisor,

or root partition) use the reserved pages, rather than not

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

89

−

−

−

−

−

−
−

−

assigning them to guest VMs. However, this would make

it hard to argue about the security of the resulting system.

For example, if the pages were used to store system code,

one would have to ensure that attackers could not access

the cache lines of stealth pages indirectly by causing the

execution of certain system functions.

 Page Table Alerts

The second option is to use the memory from the p pre-

image sets, but to carefully mediate access to them. This

option eliminates the memory and cache overhead at the

expense of maintenance cost.

STEALTHMEM maintains the invariant that the stealth

pages never leave the shared cache. The shared cache is

w-way set associative. Intuitively, STEALTHMEM tries

to reserve one of the w slots for the stealth cache line,

while the remaining w 1 slots can be used by other

pages. STEALTHMEM interposes itself on accesses that

might cause stealth cache lines to be evicted by setting

up the hardware page mappings for most of the colliding

pages, such that attempts to access them result in page

faults and, thus, invocation of the hypervisor. We call this

mechanism a page table alert (PTA).

Rather than simply not using the pre-image sets, the

hypervisor maps all their pages to VMs like regular pages.

However, the hypervisor sets up PTAs in the hardware

page mappings for most of these pages.

More precisely, the hypervisor ensures that there will

never be more than w 1 pages (other than one stealth

page) from any of the p pre-image sets without a PTA.

The w 1 pages without PTAs are effectively a cache of

pages that can be accessed directly without incurring the

overhead of a PTA.

At initialization, the hypervisor places a PTA on every

page of each of the p pre-image sets. Upon a page fault,

the handler in the hypervisor will determine if the page

fault was caused by a PTA. If so, it will determine the

pre-image set of the page that triggered the page fault

and perform the following steps: (a) If the pre-image set

already contains w 1 pages without a PTA then one of

these pages is chosen (according to some replacement

strategy), and a PTA is placed on it. (b) The hypervi-

sor ensures that all cache lines of the stealth page and

of the up to w 1 colliding pages without PTAs are in

the cache. This can be done by accessing these cache

lines—possibly repeatedly. On most modern processors,

the hypervisor can verify that the lines are indeed in the

cache by querying the CPU performance counters for the

number of L3 cache misses that occurred while accessing

the w pages. If this number is zero then all required lines

are in the cache. (c) The hypervisor removes the PTA

from the page that caused the page fault. (d) The hypervi-

sor resumes execution of the virtual processor that caused

the page fault. The hypervisor executes steps (b) and (c)

atomically—preemption is disabled.

The critical property of these steps is that all accesses

to the w pages without PTAs will always hit the cache and,

by the inertia property, not cause any cache evictions. Any

accesses to other pages from the same pre-image set are

guarded by PTAs and will be mediated by STEALTHMEM.

In order to improve scalability, we maintain a separate

set of PTAs for each group of p processors that share

the cache. Steps (a) to (d) are performed only locally for

the set of PTAs of the processor group that contains the

processor on which the page fault occurred. Thus, only

the local group of p processors needs to be involved in the

TLB shootdown, and different processor groups can have

different sets of pages on which the PTAs are disabled.

This comes at the expense of additional memory for page

tables.

k-LRU If the CPU‘s cache replacement algorithm has

the k-LRU property (see Section 2) for some k > 1, the

following simplification is possible in step (b). Rather

than loading the cache lines from all pages without PTAs

from the pre-image set, STEALTHMEM only needs to

access once each cache line of the stealth page. This

reduces the overhead per PTA.

Furthermore, the maximum number of pages without

PTAs must now be set to k 1, which may be smaller

than w 1. This may lead to more PTAs in this variant of

the algorithm.

The critical property of this variant of the algorithm is

that, at any time, the only pages in the stealth page‘s pre-

image set that could have been accessed more recently

than the stealth page are the k 1 pages without PTAs.

Thus, by the k-LRU property, the stealth page will never

be evicted from the cache. Figure 4 illustrates this for

k = 4.

 Optimizations

Our design to expose stealth pages to arbitrary numbers

of VMs adds work to context switches. Early experiments

showed that this overhead can be significant. We use the

following optimizations to minimize this cost.

We associate physical stealth pages with cores, rather

than VMs, in order to minimize the need for shared data

structures and the resulting lock contention. STEALTH-

MEM virtualizes these physical stealth pages and exposes

a (virtual) stealth page associated with each virtual pro-

cessor of a guest. This requires copying the contents

of a virtual processor‘s stealth page and acquiring inter-

processor locks whenever the hypervisor‘s scheduler de-

cides to move a virtual processor to a different core. This

event, however, is relatively rare and costly in itself. Thus,

the work we add is only a small fraction of the total cost.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

90

−
−

Figure 4: Page table alerts on accessing pages 1, 2, 3, 4 and 1, which are the pre-images of the same cache line set.

When getting a page fault on accessing page 4, STEALTHMEMPTA reloads the stealth page to lock its cache lines. The

k-LRU policy (k = 4) guarantees that the stealth page will not be evicted from the cache. Extra page faults come from

accessing PTA-guarded pages. Accessing the tracked cache lines (pages without PTAs) will not generate extra page

faults and, thus, no extra performance penalty.

With this optimization, each guest still has its own pri-

vate stealth pages (one per virtual processor). A potential

difficulty of this approach is that guest code sees different

stealth pages, depending on which virtual processor it

runs on. However, this problem is immaterial for the stan-

dard application of STEALTHMEM, in which the stealth

pages store S-box tables that never change.

Furthermore, we use several optimizations to minimize

the cost of copying stealth pages and flushing their cache

lines during context switches. Rather than backing the

contents of a core‘s stealth page to a regular VM context

page, we give each VM a separate set of stealth pages.

Each VM has its own stealth page from pre-image set i

for core i. Thus, if a VM is preempted and later resumes

execution on the same set of cores, it is only necessary to

refresh the cache lines of its stealth pages. The contents

of a stealth page only have to be saved and restored if a

virtual processor moves to a different core.

A frequent special case are transitions between a VM

and the root partition. When a VM requires a service,

such as access to the disk or the network, the root parti-

tion needs to be invoked. After the requested service is

complete, control is returned to the VM—typically on the

same cores on which it was originally running. Thus, it is

not necessary to copy the stealth page contents on either

transition. Furthermore, since we do not assign stealth

pages to the root partition, it is not even necessary to flush

caches.

 Extensions

As long as the machine has sufficient memory, we do

not use the pages from the collision sets. This will help

STEALTHMEM to avoid the performance overhead of

maintaining PTAs. If, at some point, the machine is

short of memory, STEALTHMEM can start assigning PTA-

guarded pages to VMs, making all memory accessible.

STEALTHMEM can, in principle, provide more than

one page of stealth memory per core. In order to ensure

that stealth pages are not evicted from the cache, the

number of stealth pages per core can be at most k 1 for

variants that rely on the k-LRU property and at most w 1

for other variants, where w is the wayness of the cache.

 API

VM level STEALTHMEM exposes stealth pages as ar-

chitectural features of virtual processors. The guest oper-

ating system can find out the physical address of a virtual

processor‘s stealth page by making a hypercall, which is

a common interface to communicate with the hypervisor.

Application level Application code has to be modified

in order to place critical data on stealth pages. STEALTH-

MEM provides programmers with two simple APIs for

requesting and releasing stealth memory as shown in Ta-

ble 3: sm alloc() and sm free(). Programmers can pro-

tect important data structures, such as the S-boxes of

encryption algorithms, by requesting stealth memory and

then copying the S-boxes to the allocated space. In Sec-

tion 6, we will evaluate the API design by modifying

popular cryptographic algorithms, such as DES, AES and

Blowfish, in order to protect their S-boxes with STEALTH-

MEM.

5 Implementation

We have implemented the STEALTHMEM design on Win-

dows Server 2008 R2 using Hyper-V for virtualization.

The STEALTHMEM implementation consists of 5,000

lines of C code that we added to the Hyper-V hypervisor.

We also added 500 lines of C code to the Windows boot

loader modules (bootmgr and winloader).

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

91

−

API

void ∗ sm alloc(size t size)
void sm free(void ∗ ptr)

Description

Allocate dynamic memory of size bytes and return a corresponding pointer

Free allocated memory pointed to by the given pointer, ptr

Table 3: APIs to allocate and free stealth memory

STEALTHMEM exposes stealth pages to applications

through a driver that runs in the VMs and that produces

the user mode mappings necessary for sm alloc() and

sm free(). We did not have to modify the guest operating

system to use STEALTHMEM.

We implemented two versions of STEALTHMEM. In

the first implementation, Hyper-V makes the unused

pages from the p pre-image sets inaccessible. We will

refer to this implementation as STEALTHMEM. The sec-

ond implementation maps those pages to VMs, but guards

them with PTAs. We will explicitly call this version

STEALTHMEMPTA.

Hyper-V configures the hardware virtualization exten-

sions to trap into the hypervisor when VM code executes

invd instructions. We extended the handler to reload the

stealth cache lines immediately after executing invd. We

proceeded similarly with wbinvd.

 Root Partition Isolation

Hyper-V relies on Windows to boot the machine. First,

Windows boots on the physical machine. Hyper-V is

launched only after that. The Windows instance that

booted the machine becomes the root partition (equiva-

lent to dom0 in Xen). In general, by the time Hyper-V is

launched, the root partition will be using physical pages

from all pre-image sets. It would be hard or impossible

to free up complete pre-image sets by evicting the root

partition from selected physical pages. The reasons in-

clude the use of large pages which span all pre-image sets

or the use of pages by hardware devices that operate on

physical addresses.

We obtain pre-image sets that are not used by the sys-

tem by marking all pages in these sets as bad pages in the

boot configuration data using bcdedit. This causes the

system to ignore these pages and cuts physical memory

into many small chunks. We had to adapt the Windows

boot loader to enable Windows to boot under this unusual

memory configuration.

As a result of this change there are no contiguous large

(2 MB or 4 MB) pages on the machine. Both the Windows

kernel and Hyper-V attempt to use large pages to improve

performance. Large page mappings reduce the translation

depth from virtual to physical addresses. Furthermore,

they reduce pressure on the TLB. We will evaluate the

impact of not using large pages on the performance of

STEALTHMEM in Section 6).

 k-LRU

Major CPU vendors implement pseudo-LRU replacement

policies as an approximation of the LRU policy [14].

However, this is neither officially documented nor ex-

plicitly stated in CPU developer manuals [6, 16]. We

conducted the following experiment to find a k value for

which our target Xeon W3520 CPU has the k-LRU prop-

erty.

We selected a set of pages that mapped to the same
cache lines. Then, we loaded one page into the L3 cache
by reading the contents of the page. After that, we loaded

k′ other pages of the same pre-image set. Then, we turned
on the performance counter and checked L3 cache misses

after reading the first page again. We ran this experiment

in a device driver (ring0) on one core, while the other
cores were spinning on a shared lock. Interrupts were

disabled. We varied k′ from 1 to 16 (set associativity).

We started seeing L3 misses at k′ = 15 and concluded that
our CPU has the 14-LRU property.

6 Evaluation

We ask three questions to evaluate STEALTHMEM. First,

how effective is STEALTHMEM against cache-based side

channel attacks? Second, what is the performance over-

head of STEALTHMEM and its characteristics? And fi-

nally, how easy is it to adopt STEALTHMEM in existing

applications?

 Security

 Basic Algorithm

We consider the basic algorithm (without the optimiza-

tions of Section 4.5) first. STEALTHMEM guarantees that

all cache lines of stealth pages are always in the shared

(L3) cache. In the version that makes colliding pages in-

accessible, this is the case simply because on each group

of cores that share a cache, the only accessible pages from

the collision sets of the stealth pages are the stealth pages

themselves. We load all stealth pages into the shared

cache at initialization. Since Section 4.6 limits the num-

ber of stealth pages per collision set to w 1 , this will

result in all stealth pages being in the cache simultane-

ously. It is impossible to generate collisions. Thus, by the

inertia property, these cache lines will never be evicted.

In the PTA version, it is theoretically possible for

stealth cache lines to be evicted very briefly from the

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

92

−

−

cache during PTA handling while the w 1 colliding

pages without PTAs are loaded into the cache. The stealth

cache line would be reloaded immediately as part of the

same operation, and the time outside the shared cache

could be limited to one instruction by accessing the stealth

cache line immediately after accessing a colliding line.

Leakage channels This property together with other

properties of STEALTHMEM prevents trace-driven and

active time-driven attacks on stealth pages. We consider

each of the three leakage channels in turn:

Multicore: Attackers running concurrently on other

cores cannot directly manipulate (prime) or probe stealth

cache lines of the victim‘s core. This holds for the shared

cache because, as observed above, all stealth lines always

remain in the shared (L3) cache irrespective of the actions

of victims or attackers. It also holds for the other caches

(L1 and L2) because they are not shared.

Time sharing: Attackers who time-share a core with a

victim cannot directly manipulate or probe stealth cache

lines either because we load all stealth cache lines into the

cache (including L1 and L2) at the very end of a context

switch. Thus, no matter what the adversary or the victim

did before the context switch, all stealth lines will be in

all caches after a context switch. Thus, direct priming and

probing the cache should yield no information.

Hyper-Threading: STEALTHMEM gang schedules hy-

perthreads to prevent side channels across them.

Limitations While STEALTHMEM locks stealth lines

into the last level shared (L3) cache, it has no such con-

trol over the upper level caches (L1 and L2) other than

reloading stealth pages while context switching. Accord-

ingly, STEALTHMEM cannot hide the timing differences

coming out of L1 and L2 cache. Passive timing attacks

may arise by exploiting the timing differences between

L1 and L3 from a different VM. As stated earlier, passive

timing attacks are not our focus since they are not a new

threat that results from hardware sharing in the cloud.

 Extensions and Optimizations

Per-VM stealth pages Section 4.5 describes an opti-

mization that maintains a separate set of per-core stealth

pages for each VM. With this optimization, stealth cache

lines are not guaranteed to stay in the shared cache perma-

nently. However, by loading the stealth page contents into

the cache at the end of context switches, STEALTHMEM

guarantees that the contents of a VM‘s per-core stealth

pages are reloaded in the shared cache, whenever the core

executes the VM. Thus, the situation for attackers running

concurrently on different cores is the same as for the basic

algorithm. Our observations regarding context switches

and Hyper-Threading also carry over directly.

k-LRU In the PTA variant that relies on the k-LRU

property, the stealth page is kept in the cache because at

most k 1 colliding pages can be accessed without PTAs.

Since STEALTHMEM accesses the stealth page at the end

of every page fault that results in a PTA update, the stealth

cache lines are always at least the k-least recently used

lines in their associative set. Thus, on a CPU with the k-

LRU property, they will not be evicted.

 Denial of Service

VMs do not have to (and cannot) request or release stealth

pages. Instead, STEALTHMEM provides every VM with

its own set of stealth pages as part of the virtual machine

interface. This set is fixed from the point of view of the

VM. Accesses by a VM to its stealth pages do not affect

other VMs. Thus, there should be no denial of service

attacks involving stealth pages at the VM interface level.

Guest operating systems running inside VMs may have

to provide stealth pages to multiple processes. The details

of this lie outside the scope of this paper. As noted above,

the techniques used in STEALTHMEM can also be applied

to operating systems. Operating systems that choose to

follow the STEALTHMEM approach virtualize their VM-

level stealth pages and provide a fixed independent set of

stealth pages to each process. Again, this type of stealth

memory should not give rise to denial of service attacks.

The APIs of Table 3 would be merely convenient syntax

for a process to obtain a pointer to its stealth pages.

 Performance

We have measured the performance of our STEALTHMEM

implementation to assess the efficiency and practicality

of STEALTHMEM. The experiments ran on an HP Z400

workstation with a 2.67 GHz 4 core Intel Xeon W3520

CPU with 16 GB of DDR3 RAM. The cores were running

at 2.8 GHz. Each CPU core has a 32 kB 8-way L1 D-

cache, a 32 kB 4-way L1 I-cache and a 256 kB 8-way L2

cache. In addition, the four cores share an 8 MB 16-way

L3 cache. The machine ran a 64-bit version of Windows

Server 2008 R2 HPC Edition (no service pack). We con-

figured the power settings to run the CPU always at full

speed in order to reduce measurement noise. The virtual

machines used in the experiments ran the 64-bit version

of Windows 7 Enterprise Edition and had 2 GB of RAM.

This was the recommended minimum amount of memory

for running the SPEC 2006 CPU benchmark [37].

 Performance Overhead

Our first goal was to estimate the overhead of STEALTH-

MEM and STEALTHMEMPTA. We have measured exe-

cution times for three configurations: Baseline—an un-

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

93

Benchmark Baseline Stealth Stealth PTA BaselineNLP

 time st.dev. time st.dev. overhead time st.dev. overhead time st.dev. overhead

perlbench 508 0.1% 537 0.3% 5.7% 538 0.5% 5.9% 532 0.5% 4.7%

bzip2 610 2.0% 618 0.2% 1.3% 624 1.8% 2.3% 617 2.0% 1.1%

gcc 430 0.1% 466 0.3% 8.4% 476 0.2% 10.7% 462 0.3% 7.4%

milc 257 0.1% 289 0.7% 12.5% 298 0.5% 16.0% 284 1.6% 10.5%

namd 498 0.0% 500 0.1% 0.4% 500 0.1% 0.4% 499 0.1% 0.2%

dealII 478 0.1% 492 0.3% 2.9% 495 0.2% 3.6% 490 0.1% 2.5%

soplex 361 1.9% 401 0.4% 11.1% 412 0.3% 14.1% 394 0.2% 9.1%

povray 228 0.1% 229 0.6% 0.4% 229 0.1% 0.4% 228 0.2% 0.0%

calculix 360 0.2% 366 0.3% 1.7% 366 0.3% 1.7% 363 0.8% 0.8%

astar 454 0.1% 501 0.3% 10.4% 508 1.3% 11.9% 495 0.2% 9.0%

wrf 307 1.9% 331 0.8% 7.8% 336 1.2% 9.4% 329 0.6% 7.2%

sphinx3 602 0.1% 654 0.4% 8.6% 662 0.7% 10.0% 639 0.2% 6.1%

xalancbmk 307 0.2% 324 0.2% 5.5% 329 0.3% 7.2% 321 0.0% 4.6%

average 5.9% 7.2% 4.9%

Table 4: Running time in seconds (time), error bound (st.dev.) and overhead on 13 SPEC2006 CPU benchmarks for

Baseline, STEALTHMEM, STEALTHMEMPTA and BaselineNLP.

modified version of Windows with an unmodified ver-

sion of Hyper-V—and our respective implementations of

STEALTHMEM and STEALTHMEMPTA.

In the first experiment, we ran each configuration with

two VMs. One VM ran the SPEC 2006 CPU bench-

mark [37]. Another VM was idle. Table 4 displays the

execution times for 13 applications from the SPEC bench-

mark suite. We repeated each run ten times, obtaining

ten samples for each time measurement. The running

times in the table are the sample medians. The table also

displays the sample standard deviation as a percentage

of the sample average as an indication of the noise in the

sample. The sample standard deviation is typically less

than one percent of the sample average.

The overhead of STEALTHMEM varies between close

to zero for about one third of the SPEC applications

and 12.5% for milc. The average overhead is 5.9%. As

expected, the overhead of STEALTHMEMPTA (7.2%) is

larger than that of STEALTHMEM because of the extra

cost of handling PTA page faults. Server operators can

choose either variant, depending on the memory usage of

their servers.

We also attempted to find the source of the overhead

of STEALTHMEM. Possible sources are the cost of virtu-

alizing stealth pages, the 3% reduction in the size of the

available cache and the cost of not being able to use large

pages. We repeated the experiment with a configuration

that is identical to the Baseline configuration, except that

it does not use large pages. It is labeled BaselineNLP (for

‗no large pages‘) in Table 4. The overheads for Baseli-

neNLP across the different SPEC applications correlate

with the overheads of STEALTHMEM. The overhead due

to not using large pages (4.9% on average) accounts for

more than 80% of the overhead of STEALTHMEM.

We constructed BaselineNLP using the same binaries

as Baseline. However, at hypervisor startup, we disabled

one Hyper-V function by using the debugger to overwrite

its first instruction with a ret. This function is responsible

for replacing regular mappings by large mappings in the

extended page tables. Without it, Hyper-V will not use

large page mappings irrespective of the actions of the root

partition or other guests.

 Comparison with Page Coloring

Page coloring [33] isolates VMs from cache-related de-

pendencies by partitioning physical memory pages among

VMs such that no VM shares cache lines with any other

VM. We modified one of the Hyper-V support drivers in

the root partition (vid.sys) to assign physical memory to

VMs accordingly.

In this simple implementation of Page Coloring, the

VMs still share cache lines with the root partition. The

same holds for the system in [33]. In contrast, our

STEALTHMEM implementation isolates stealth pages also

from the root partition. While this difference makes the

Page Coloring configuration less secure, it should work

to its advantage in the performance comparison.

The next experiment compares the overheads of

STEALTHMEM and Page Coloring as the number of VMs

increases. We ran BaselineNLP, STEALTHMEM and Page

Coloring with between 2 and 7 VMs, running the SPEC

workload in one VM and leaving the remaining VMs idle.

The root partition is not included in the VM count. Again,

each time measurement is the median of ten SPEC runs.

The sample standard deviation was typically less than1%

and in no case more than 2.5% of the sample mean.

Figure 5 displays the overheads over BaselineNLP of

STEALTHMEM (left) and Page Coloring (right) as a func-

tion of the number of VMs. We chose to display the

overhead over BaselineNLP, rather than Baseline, in or-

der to eliminate the constant cost of not using large pages,

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

94

perlbench
bzip2

gcc
milc

namd
dealII
soplex
povray

calculix
astar
wrf

sphinx3
xalancbmk O

v
er

h
ea

d
 (

%
)

50% 50%

40% 40%

30% 30%

20% 20%

10% 10%

0% 0%

2 3 4 5 6 7

#VM

2 3 4 5 6 7

#VM

Figure 5: Overhead of STEALTHMEM (left) and Page Coloring (right) over BaselineNLP. The x-axis is the number of

VMs.

which affects STEALTHMEM and Page Coloring similarly.

Using Baseline adds an application dependent constant to

each curve.

Overall, the overhead of STEALTHMEM is significantly

smaller than the overhead of Page Coloring. The lat-

ter grows with the number of VMs, as each VM gets a

smaller fraction of the cache. In contrast, the overhead of

STEALTHMEM remains largely constant as the number

of VMs increases.

Figure 5 also shows significant differences between

the individual benchmarks. For eight benchmarks, Page

Coloring shows a large and rising overhead. The most ex-

treme case of this is sphinx3 with a maximum overhead of

almost 50%. For four benchmarks, the overhead of Page

Coloring is close to zero. Finally, the milc benchmark

stands out, as Page Coloring runs it consistently faster

than BaselineNLP and STEALTHMEM.

These observations are roughly consistent with the

cache sensitivity analysis of Jaleel [19]. The applications

with low overhead (namd, povray and calculix) appear to

have very small working sets that fit into the L3 cache of

all configurations we used in the experiment (including

Page Coloring with 7 VMs). For the eight benchmarks

with higher overhead, the number of cache misses appears

to be sensitive to lower cache sizes in the range covered

by our Page Coloring experiment (8/7 MB to 8 MB). For

the milc application, the data reported by Jaleel indicate

a working set size of more than 64 MB. This suggests

that milc may be thrashing the L3 cache as well as the

TLB even when given the entire cache of the machine

under BaselineNLP. The performance improvement under

Page Coloring may be the result of the CPU being able

to resolve certain events (such as page table walks) faster

when a large part of the cache is not being thrashed by

milc.

8s

7s

6s

5s

4s

3s

2s

1s

0s
2 4 6 8 10 12

Working Set Size (MB)

Figure 6: Running times of a micro-benchmark as a

function of its working set size.

 Overhead With Various Working Set Sizes

The following experiment shows overhead as a function

of working set size. Given the working set of an ap-

plication, developers can estimate the expected perfor-

mance overhead when they modify an application to use

STEALTHMEM.

In the experiment, we used a synthetic application that

makes a large number of accesses to an array whose size

we varied (the working set size). The working set size

is the input to the application. It allocates an array of

that size and reads memory from the array in a tight loop.

The memory accesses start at offset zero and move up

the array in a quasi-linear pattern of increasing the offset

for the next read operation by 192 bytes (three cache line

sizes) and reducing the following offset by 64 bytes (one

cache line size). This is followed by another 192 byte

increase and another 64 byte reduction etc. When the end

of the array is reached, the process is repeated, starting

Baseline

Baseline (NLP)
Stealth

Stealth (PTA)
Page Coloring

O
v

er
h

ea
d

 (
%

)

E
x
e
c
u
ti

o
n

 t
im

e
 (

s)

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

95

10%

8%

6%

4%

2%

0%

1 2 3 4 5 6 7 8

#Stealth Pages per VM

Figure 7: Overhead of STEALTHMEM as a function of

the number of stealth pages

again at offset zero.

We ran the application for several configurations. In

each case, we ran seven VMs. One VM was running

our application. The remaining six VMs were idle. We

varied the working set sizes from 100 kB to 12.5 MB and

measured for each run the time needed by the application

to make three billion memory accesses. The results are

displayed in Figure 6. The time measurements in the

figure are the medians over five runs. The sample standard

deviations were less than 0.5% of the sample means for

most working set sizes. However, where the slope of

a curve was very steep, the sample standard deviations

could be up to 5% of the sample means.

Most configurations show a sharp rise in the running

times as the working set size increases past the size of the

L3 cache (8 MB). For Page Coloring, this jump occurs for

much smaller working sets since the VM can access only

one seventh of the CPU‘s cache. Most configurations also

display a second, smaller increase around 2 MB. This

may be the result of TLB misses. The processor‘s L2

TLB has 512 entries which can address up to 2 MB based

on regular 4 kB page mappings.

For very large workload sizes, BaselineNLP and

STEALTHMEM become slower than Page Coloring. This

appears to be the same phenomenon that caused Page

Coloring to outperform BaselineNLP and STEALTHMEM

on the milc benchmark.

 Overhead With Various Stealth Pages

This experiment attempts to estimate how the overhead

of STEALTHMEM depends on the number of stealth

pages that the hypervisor provides to each VM. We ran

STEALTHMEM with one VM running the SPEC bench-

marks and varied the number of stealth pages per VM. As

before, the times we report are the medians over ten runs.

The sample standard deviations were less than 0.4% of

the sample means in all cases.

Figure 7 displays the overhead with respect to

STEALTHMEM with one stealth page per VM. There is no

noticeable increase in the running time as the number of

stealth pages increases. This is the result of the optimiza-

tions described earlier that eliminate the need to copy the

contents of stealth pages or to load them into the cache

frequently.

 Block Ciphers

The goal of this experiment is to evaluate performance for

real-world applications that heavily use stealth pages. We

choose three popular block ciphers: AES [2], DES [1] and

Blowfish [35]. Efficient implementations of each of these

ciphers perform a number of lookups in a table during

encryption and decryption. We picked Bruce Schneier‘s

implementation of Blowfish [36], and standard commer-

cial implementations of AES and DES and adapted them

to use stealth pages (as described in Section 6.4).

We measured the encryption speeds of each of the ci-

phers for (a) the baseline configuration (unmodified Win-

dows 7, Hyper-V and cipher implementation), (b) our

STEALTHMEM configuration using the modified versions

of the cipher implementations just described and (c) an

uncached configuration, which places the S-box tables

on a page that is not cached. Configuration (c) runs the

modified version of the block cipher implementations on

an unmodified version of Windows and an essentially un-

modified version of the hypervisor. We added a driver in

the Windows 7 guest that creates an uncached user mode

mapping to a page. We also had to add one hypercall to

Hyper-V to ensure that this page was indeed mapped as

uncached in the physical page tables. We included this

configuration in our experiments since using an uncached

page is the simplest way to eliminate cache side channels.

We measured the time required to encrypt 5 million

bytes for each configuration. In order to reduce mea-

surement noise, we raised the scheduling priority of the

encryption process to the HIGH PRIORITY CLASS of

the Windows scheduler. We ran the experiment in a small

buffer configuration (50,000 byte buffer encrypted 1,000

times) and a large buffer configuration (5 million byte

buffer encrypted once) to show performance overheads

with different workloads.

The numbers in Table 5 are averaged over 1,000 runs.

The sample standard deviation lies between 1 and 4 per-

cent of the sample averages. The overhead of using a

stealth page with respect to baseline performance lies be-

tween 2% and 5%, while the overhead of the uncached

version lies between 97.9% and 99.9%.

perlbench
bzip2

gcc
milc

namd
dealII
soplex

povray
calculix

astar
wrf

sphinx3
xalancbmk

O
v
e
rh

e
a
d
 (

%
)

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

96

 A small buffer (50,000 bytes) A large buffer (5,000,000 bytes)

Cipher Baseline Stealth Uncached Baseline Stealth Uncached

DES 60 58 -3% 0.83 -99% 59 57 -3% 0.83 -99%

AES 150 143 -5% 1.33 -99% 142 135 -5% 1.32 -99%

Blowfish 77 75 -2% 1.65 -98% 75 74 -2% 1.64 -98%

Table 5: Block cipher encryption speeds in MB/s for small and large buffers. We mapped the S-box of each encryption

algorithm to cached, stealth and uncached pages.

typedef unsigned long UlongArray[256];

static UlongArray *S;

// in the initialization function

S = sm alloc(4*256);

Table 6: Modified Blowfish to use STEALTHMEM

Encryption Size of S-box LoC Changes

DES 256 B * 8 = 2 kB 5 lines

AES 1024 B * 4 = 4 kB 34 lines

Blowfish 1024 B * 4 = 4 kB 3 lines

Table 7: Size of S-box in various encryption algorithms,

and corresponding changes to use STEALTHMEM

 Ease-of-use

We had to make only minor changes to the block cipher

implementations to adapt them to STEALTHMEM. These

changes amounted to replacing the global array variables

that hold the encryption tables by pointers to the stealth

page. In the case of Blowfish, this change required only

3 lines. We replaced the global array declaration by a

pointer and assigned the base of the stealth page to it in

the initialization function (see Table 6).

Adapting DES required us to change a total of 5 lines.

In addition to a change of the form just described, we had

to copy the table contents (constants in the source code)

to the stealth page. This was not necessary for Blowfish

which read these data from a file. Adapting AES required

a total of 34 lines. This large number is the result of the

fact that our AES implementation declares its table as 8

different variables, which forced us to repeat 8 times the

simple adaptation we did for DES. Table 7 summarizes

the S-box layouts and the required code changes for the

three ciphers.

7 Related Work

Kocher [22] presented the initial idea of exploiting tim-

ing differences to break popular cryptosystems. Even

though Kocher speculated about the possibility of ex-

ploiting cache side channels, the first theoretical model

of cache attacks was described by Page [31] in 2002.

Around that time, researchers started investigating cache-

based side channels against actual cryptosystems and

broke popular cryptosystems such as AES [4, 8, 9, 30],

and DES [40]. With the emergence of simultaneous multi-

threading, researchers discovered a new type of cache

attacks, classified as trace-driven attacks in our paper,

against AES [3, 30] and RSA [32] by exploiting the new

architectural feature of an L1 cache that is shared by two

hyperthreads. Recently, Osvik et al. [30, 39] executed

more quantitative research on cache attacks and classified

possible attack methods. The new cloud computing en-

vironments have also gained the attention of researchers

who have explored the possibility of cache-based side

channel attacks in the cloud [7, 34, 44], or inversely their

use in verifying co-residency of VMs [45].

Mitigation methods against cache attacks have been

studied in three directions: suggesting new cache hard-

ware with security in mind, designing software-only de-

fense mechanism, and developing application specific

mitigation methods.

Hardware-based mitigation methods focus on reduc-

ing or obfuscating cache accesses [23, 24, 41–43] by de-

signing new caches, or partitioning caches with dynamic

or other efficient methods [12, 21, 27, 42, 43]. Wang

and Lee [42, 43] proposed PLcache to hide cache access

patterns by locking cache lines, and RPcache to obfus-

cate patterns by randomizing cache mappings. These

hardware-based approaches, however, will not provide

practical defenses until CPU makers integrate them into

mainstream CPUs and cloud providers purchase them.

Our defense mechanism not only provides similar secu-

rity guarantee as these methods, but also allows cloud

providers to utilize existing commodity hardware.

Software-only defenses [7,11,13,15,33] also have been

actively proposed. Against time-drive attacks, Coppens

et al. [11] demonstrated a mitigation method by modi-

fying a compiler to remove control-flow dependencies

on confidential data, such as secret keys. This compiler

technique, however, leaves applications still vulnerable

to trace-driven cache attacks in the cloud. Against trace-

driven attacks, static partitioning techniques, such as page

coloring [33], provide a general mitigation solution by

partitioning pre-image sets among VMs. Since static par-

titioning divides the cache by the number of VMs, its

performance overhead becomes significantly larger when

cloud providers run more VMs, as we demonstrated in

 Source code

Original static unsigned long S[4][256];

Modified

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

97

Section 6. Our solution, however, assigns unique cache

line sets to virtual processors and flexibly loads stealth

pages of each VM if necessary, and thus demonstrates

better performance.

Erlingsson and Abadi [13] proposed the abstraction of

―stealth memory‖ and sketched techniques for implement-

ing it. We have realized the abstraction in a virtualized

multiprocessor environment by designing and implement-

ing a complete defense system against cache side channel

attacks and evaluating it across system layers (from the

hypervisor to cryptographic applications) in a concrete

security model.

Since existing hardware-based and software-only de-

fenses are not practical because they require new CPU

hardware or because of their performance overhead,

researchers have been exploring mitigation methods

for particular algorithms or applications. The design

and implementation of AES has been actively revisited

by [8–10, 14, 30, 39], focusing on eliminating or control-

ling access patterns on S-Boxes, or not placing S-Boxes

into memory [28], but into registers of x64 CPUs. Re-

cently, Intel [17] introduced a special instruction for AES

encryption and decryption. These approaches may secure

AES from cache side channels, but it is not realistic to

introduce new CPU instructions for every software algo-

rithm that might be subject to leaking information via

cache side channels. In contrast, STEALTHMEM provides

a general system-level protection solution that every ap-

plication can take advantage of if it wants to protect its

confidential data in the cloud.

8 Conclusion

We design and implement STEALTHMEM, a system-level

protection mechanism against cache-based side channel

attacks, specifically against active time-driven and trace-

driven cache attacks, which cloud platforms suffer from.

STEALTHMEM helps cloud service providers offer bet-

ter security against cache attacks, without requiring any

hardware modifications.

With only a few lines of code changes, we can mod-

ify popular encryption schemes such as AES, DES and

Blowfish to use STEALTHMEM. Running the SPEC 2006

CPU benchmark shows an overhead of 5.9%, and our

micro-benchmark shows that the secured AES, DES, and

Blowfish have between 2% and 5% performance over-

head, while making extensive use of STEALTHMEM.

Acknowledgments

We thank the anonymous reviewers, and our shepherd,
David Lie, for their feedback. We would also like to thank

Ú far Erlingsson and Martı́n Abadi for several valuable

conversations. Taesoo Kim is partially supported by the

Samsung Scholarship Foundation.

References

[1] Data Encryption Standard (DES). In FIPS PUB 46, Federal

Information Processing Standards Publication (1977).

[2] Advanced Encryption Standard (AES). In FIPS PUB 197, Federal

Information Processing Standards Publication (2001).

[3] ACIIÇ MEZ, O., AND Ç ETIN KAYA KOÇ . Trace-driven cache

attacks on AES. Cryptology ePrint Archive, Report 2006/138,

2006.

[4] ACIIÇ MEZ, O., SCHINDLER, W., AND Ç ETIN K. KOÇ . Cache

based remote timing attack on the AES. In Topics in Cryptology –

CT-RSA 2007, The Cryptographers’ Track at the RSA Conference

2007 (2007), Springer-Verlag, pp. 271–286.

[5] AMAZON, INC. Amazon Elastic Compute Cloud (EC2). http:
//aws.amazon.com/ec2, 2012.

[6] AMD, INC. AMD64 Architecture Programmer’s Manual.

No. 24594. December 2011.

[7] AVIRAM, A., HU, S., FORD, B., AND GUMMADI, R. Deter-

minating timing channels in compute clouds. In Proceedings

of the 2010 ACM Cloud Computing Security Workshop (2010),

pp. 103–108.

[8] BERNSTEIN, D. J. Cache-timing attacks on AES. Available at:

http://cr.yp.to/antiforgery/cachetiming-20050414. pdf,
2005.

[9] BONNEAU, J., AND MIRONOV, I. Cache-collision timing attacks

against AES. In Proceedings of the 8th International Workshop on

Cryptographic Hardware and Embedded Systems (2006), pp. 201–

215.

[10] BRICKELL, E., GRAUNKE, G., NEVE, M., AND SEIFERT, J.-

P. Software mitigations to hedge AES against cache-based soft-

ware side channel vulnerabilities. IACR ePrint Archive, Report

2006/052, 2006.

[11] COPPENS, B., VERBAUWHEDE, I., BOSSCHERE, K. D., AND

SUTTER, B. D. Practical mitigations for timing-based side-

channel attacks on modern x86 processors. In Proceedings of

the 2009 IEEE Symposium on Security and Privacy (2009), pp. 45–

60.

[12] DOMNITSER, L., JALEEL, A., LOEW, J., ABU-GHAZALEH,

N., AND PONOMAREV, D. Non-monopolizable caches: Low-

complexity mitigation of cache side channel attacks. ACM Trans-

actions on Architecture and Code Optimization 8, 4 (Jan. 2012),

35:1–35:21.

[13] ERLINGSSON, Ú ., AND ABADI, M. Operating system protection

against side-channel attacks that exploit memory latency. Tech.

Rep. MSR-TR-2007-117, Microsoft Research, August 2007.

[14] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache

Games – bringing access-based cache attacks on AES to practice.

In Proceedings of the 2011 IEEE Symposium on Security and

Privacy (May 2011), pp. 490 –505.

[15] HU, W. M. Reducing timing channels with fuzzy time. In Pro-

ceedings of the 1991 IEEE Symposium on Security and Privacy

(1991), pp. 8–20.

[16] INTEL, INC. IntelⓍR 64 and IA-32 Architectures Software

Devel- oper’s Manual. No. 253669-033US. December 2009.

[17] INTEL, INC. Advanced Encryption Standard (AES) Instructions

Set. http://software.intel.com/file/24917, 2010.

http://cr.yp.to/antiforgery/cachetiming-20050414
http://software.intel.com/file/24917

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

98

[18] ION, I., SACHDEVA, N., KUMARAGURU, P., AND Č APKUN,

S. Home is safer than the cloud! Privacy concerns for consumer

cloud storage. In Proceedings of the Seventh Symposium on Usable

Privacy and Security (2011), pp. 13:1–13:20.

[19] JALEEL, A. Memory characterization of workloads using

instrumentation-driven simulation – a pin-based memory charac-

terization of the SPEC CPU2000 and SPEC CPU2006 benchmark

suites. Tech. rep., VSSAD, 2007.

[20] JANSEN, W., AND GRANCE, T. Guidelines on security and

privacy in public cloud computing. NIST Special Publication

800-144, December 2011.

[21] KIM, S., CHANDRA, D., AND SOLIHIN, Y. Fair cache sharing

and partitioning in a chip multiprocessor architecture. In Proceed-

ings of the 13th International Conference on Parallel Architectures

and Compilation Techniques (2004), pp. 111–122.

[22] KOCHER, P. C. Timing attacks on implementations of Diffie-

Hellman, RSA, DSS, and other systems. In Advances in Cryptol-

ogy (1996), pp. 104–113.

[23] KONG, J., ACIIÇ MEZ, O., SEIFERT, J.-P., AND ZHOU, H. De-

constructing new cache designs for thwarting software cache-

based side channel attacks. In Proceedings of the 2nd ACM Work-

shop on Computer Security Architectures (2008), pp. 25–34.

[24] KONG, J., ACIIÇ MEZ, O., SEIFERT, J.-P., AND ZHOU, H.

Hardware-software integrated approaches to defend against soft-

ware cache-based side channel attacks. In Proceedings of the

15th International Conference on High Performance Computer

Architecture (2009), pp. 393–404.

[25] MANGALINDAN, J. Is user data safe in the cloud?

http://tech.fortune.cnn.com/2010/09/24/
is-user-data-safe-in-the-cloud, September 2010.

[26] MICROSOFT, INC. Microsoft Azure Services Platform. http:
//www.microsoft.com/azure/.

[27] MOSCIBRODA, T., AND MUTLU, O. Memory performance at-

tacks: denial of memory service in multi-core systems. In Proceed-

ings of the 16th USENIX Security Symposium (2007), pp. 257–274.

[28] MÜ LLER, T., DEWALD, A., AND FREILING, F. C. AESSE: a

cold-boot resistant implementation of AES. In Proceedings of the

Third European Workshop on System Security (2010), pp. 42–47.

[29] NEVE, M., AND SEIFERT, J.-P. Advances on access-driven cache

attacks on AES. In Selected Areas in Cryptography, vol. 4356.

2007, pp. 147–162.

[30] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks

and countermeasures: the case of AES. In Topics in Cryptology -

CT-RSA 2006, The Cryptographers Track at the RSA Conference

2006 (2005), pp. 1–20.

[31] PAGE, D. Theoretical use of cache memory as a cryptanalytic

side-channel. Tech. Rep. CSTR-02-003, Department of Computer

Science, University of Bristol, June 2002.

[32] PERCIVAL, C. Cache missing for fun and profit. In BSDCan 2005

(Ottawa, 2005).

[33] RAJ, H., NATHUJI, R., SINGH, A., AND ENGLAND, P. Resource

management for isolation enhanced cloud services. In Proceedings

of the 2009 ACM Cloud Computing Security Workshop (2009),

pp. 77–84.

[34] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,

S. Hey, you, get off of my cloud: exploring information leakage

in third-party compute clouds. In Proceedings of the 16th ACM

Conference on Computer and Communications Security (2009),

pp. 199–212.

[35] SCHNEIER, B. The Blowfish encryption algorithm. http://www.
schneier.com/blowfish.html.

[36] SCHNEIER, B. The Blowfish source code. http://www.
schneier.com/blowfish-download.html.

[37] (SPEC), S. P. E. C. The SPEC CPU 2006 Benchmark Suite.

http://www.specbench.org.

[38] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Memory

deduplication as a threat to the guest OS. In Proceedings of the

Fourth European Workshop on System Security (EUROSEC ’11)

(2011), pp. 1:1–1:6.

[39] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache

attacks on AES, and countermeasures. Journal of Cryptology 23,

2 (2010), 37–71.

[40] TSUNOO, Y., SAITO, T., SUZAKI, T., AND SHIGERI, M. Crypt-

analysis of DES implemented on computers with cache. In Pro-

ceedings of the 2003 Cryptographic Hardware and Embedded

Systems (2003), pp. 62–76.

[41] WANG, Z., AND LEE, R. B. Covert and side channels due

to processor architecture. In Proceedings of the 22nd Annual

Computer Security Applications Conference (December 2006),

pp. 473 –482.

[42] WANG, Z., AND LEE, R. B. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings of the

34th International Symposium on Computer Architecture (2007),

pp. 494–505.

[43] WANG, Z., AND LEE, R. B. A novel cache architecture with

enhanced performance and security. In Proceedings of the 41st

annual IEEE/ACM International Symposium on Microarchitecture

(2008), pp. 83–93.

[44] XU, Y., BAILEY, M., JAHANIAN, F., JOSHI, K., HILTUNEN,

M., AND SCHLICHTING, R. An exploration of L2 cache covert

channels in virtualized environments. In Proceedings of the 2011

ACM Cloud Computing Security Workshop (2011), pp. 29–40.

[45] ZHANG, Y., JUELS, A., OPREA, A., AND REITER, M. K. Home-

Alone: Co-residency detection in the cloud via side-channel analy-

sis. In Proceedings of the 2011 IEEE Symposium on Security and

Privacy (2011), pp. 313–328.

http://tech.fortune.cnn.com/2010/09/24/
http://www.microsoft.com/azure/
http://www/
http://www/
http://www.specbench.org/

