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Abstract— To effectively utilise the cache, modern processors 
divide the last-level cache among all of the cores. Unfortunately, 
this kind of cache sharing leaves it susceptible to attacks where a 
malicious party deliberately orchestrates evictions utilising cache 
conflicts in order to learn the access patterns of a co-running 
programme. By randomly placing the lines in the cache, conflict-
based attacks can be lessened. The OS must be able to divide the 
apps into protected and unprotected groups for the preceding 
randomised mapping suggestions to work, which unfortunately 
requires storage-intensive tables. With little storage and 
performance overheads and without relying on OS support, the 
objective of this study is to minimise conflict-based assaultsThis 
study offers the crucial discovery that randomised mapping can 
be efficiently performed by accessing the cache with an 
encrypted address, as encryption would cause the lines of a 
conventional cache that map to the same set to be dispersed to 
separate sets. In this study, CEASE, a design that converts the 
physical line address into an encrypted line address using the 
Low-Latency Block-Cipher (LLBC), is proposed. This encrypted 
line address is then used to access the cache. We examine LLBC 
designs that are effective and can execute encryption and 
decryption in just two cycles. In order to increase robustness, we 
also suggest CEASER, a design that dynamically remaps and 
changes the encryption key on a regular basis. CEASER has 
robust security (tolerates attacks for more than 100 years), little 
performance overhead (1% slowdown), and little storage 
overhead Less than 24 bytes are required for the newly 
introduced structures, and no OS support is required. 

I. INTRODUCTION 

Caches alleviate the long latency of main memories by 

providing data with low latency. Unfortunately, the timing 

difference between the cache-hit and a cache-miss can be used 

as a side-channel by an adversary to infer the access pattern 

and obtain unauthorized information from the system. The 

recently disclosed Spectre [1] and Meltdown [2] vulnerabilities 

rely on such cache-based side channels to convert the unautho- 

rized data value into a discernible information. While cache 

attacks have been demonstrated in the past at a smaller scale, 

the recent vulnerabilities show that cache attacks can affect 

hundreds of millions of processor systems, and highlight the 

need to develop efficient solutions to mitigate cache attacks. 

Conflict-based cache attacks are an important class of cache 

side-channels, where an adversary can carefully orchestrate 

cache evictions to learn the access pattern of a co-running 

application, and use this access pattern to infer secrets (such 

as AES keys [3]). Conflict-based attacks are feasible when 

the adversary and the victim share some storage structures. 

Modern processors pack multiple cores on a single chip and 

 

tend to keep the level-1 (L1) and level-2 (L2) caches private 

to the core. However, the last-level cache (LLC) is typically 

shared between all the cores to efficiently utilize the cache 

space. Unfortunately, such sharing makes the LLC vulnerable 

to cache attacks as an adversary can learn about the access 

pattern of the victim using LLC evictions, even when the 

adversary and the victim are executing on different cores. The 

goal of our paper is to efficiently protect the LLC against such 

attacks without relying on any software support. 

Architectural solutions to mitigate conflict-based cache at- 

tacks broadly fall in two categories. First, preservation-based 

mitigation [4]–[7], whereby the lines of the victim are pre- 

served within the cache, making it harder for the adversary to 

dislodge the content of the victim. Unfortunately, dedicating 

portions of the LLC for each core results in inefficient use of 

cache space. Second, randomization-based mitigation [4], [8], 

whereby the location of the line in the cache is determined 

randomly and this information is stored in a table. To protect 

the mapping table from being attacked, the OS is required to 

group the applications into protected and unprotected groups 

and only the protected applications are allowed to use the 

mapping table and randomization. While such Table-Based 

Randomization may be feasible for L1 cache, the size of the 

mapping tables becomes impractically large for the LLC, as 

the number of entries in the mapping table increases linearly 

with the number of cache lines and the number of concurrently 

running protected applications. Furthermore, the efficacy of 

prior randomization-based scheme is dependent on the ability 

of the Operating System (OS) to correctly classify applications 

into protected and unprotected groups. Ideally, we want a 

solution that does not incur the storage overhead of large 

indirection tables and does not require any OS support, and 

yet provides high performance and strong security. 

To develop a practical solution against conflict-based cache 

attacks, we focus on the set indexing function of the cache, 

as this function determines the group of lines that get mapped 

to a given set. To successfully launch an attack, the adversary 

must find lines that map to a given set – the group of lines that 

map to the same set of the cache and can cause an eviction is 

called an Eviction Set. The LLC is accessed with a physical 

line-address (PLA). Conventional LLC designs use a static 

hash-function (bottom few bits of the PLA) to determine the 

set, as shown in Figure 1(a), which means an adversary can 

easily form an eviction set. Even if a complex hash-function 
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Fig. 1. Mapping of memory lines to the cache locations (a) conventional systems rely on static hashing to determine cache index (b) CEASE encrypts the 
the physical line-address and uses it to index the cache – the mapping of memory lines to cache index depends on the Encryption-Key (d) CEASER changes 
the key periodically and performs dynamic remapping, which limits the duration for which the memory line to cache index mapping remains constant. 

 

is used and it is not revealed to the users, an adversary can 

use timing attacks to determine the eviction set for such a 

design [9], [10]. Once an adversary infers the mapping for 

one machine, the adversary can use this information to attack 

all machines that use the same hashing function. 

We provide the key insight that randomized mapping of 

memory lines to cache locations can be accomplished effi- 

ciently by operating the cache on an Encrypted Address Space 

(EAS) instead of the Physical Address Space (PAS), as shown 

in Figure 1(b). The avalanche effect of encryption would 

cause lines that have spatial correlation in the PAS (such as 

those mapping to the same set of the cache) to get scattered 

throughout the space in EAS. This scattering would happen in 

an unpredictable fashion, and gets dictated by the Encryption- 

Key. For example, lines A and E were mapped to the same Set 

in Fig 1(a), however, in Figure 1(b) A and E get mapped to 

different sets, and for another key they would get mapped to 

some other sets. Leveraging this insight, we propose CEASE, 

a Cache operated on Encrypted Address-Space. 

CEASE employs a Low-Latency Block-Cipher (LLBC) to 

convert the b-bit Physical Line-Address (PLA) into a b-bit 

Encrypted Line-Address (ELA), and uses this ELA to access 

the cache. As cache access latency is critical to performance, 

we study potential designs for LLBC that can perform en- 

cryption and decryption with low latency. For our design, we 

use of a four-stage Feistel-Network [11] that can perform 

encryption/decryption within 2 cycles, while consuming a 

storage overhead of ten bytes (for the Encryption-Key). The 

Encryption-Key of CEASE is initialized to a random value on 

every reboot, so the mapping of PLA-to-ELA is different for 

each machine, and even for the same machine this mapping 

changes every time the machine is restarted. When a dirty line 

is evicted from the cache, CEASE uses the LLBC to perform 

decryption and convert the ELA of the evicted line to obtain 

the PLA of the evicted line, and uses this PLA to perform 

the writeback. Thus, the Encrypted Line-Address (ELA) is 

visible only within the LLC, and the operations of rest of 

the memory system (such as coherence requests, prefetch, 

writeback) remain unchanged and continue to be performed 

using the Physical Line-Address (PLA). 

The PLA-to-ELA mapping of CEASE gets dictated by 

the Encryption-Key, and for a given key, this mapping re- 

mains constant. Given enough time, an adversary can still 

launch a timing-based attack to determine which group of 

lines map to the same set (we discuss such an attack in 

Section III-E). CEASE can be made resilient against such 

attacks by periodically changing the keys and performing 

dynamic-remapping of the cache lines based on the new key, 

as shown in Figure 1(c). At time t=t1, the LLBC has key Key-

t1, and uses a particular mapping. Over time, a new key Key-

t2 is used to remap the contents of the cache and when the 

conversion finishes the key is updated to Key-t2. We call such 

a variant of CEASE that performs dynamic-remapping as 

CEASER (CEASE with Remapping). We perform a bin-and- 

balls analysis and demonstrate that CEASER provides strong 

security (tolerates 100+ years of attack) even if the remapping 

of one cache line is performed per every 100 accesses to the 

cache, thus limiting the remapping overhead to 1%. 

Overall, this paper makes the following contributions: 

1) To the best of our knowledge, this is the first paper to 

advocate operating the on-chip caches on an encrypted 

address space to mitigate cache attacks. The proposed 

CEASE design randomizes mapping of memory lines to 

cache locations without requiring any indirection tables. 

2) As cache access latency is critical for performance, we 

present a practical design for the Low-Latency Block- 

Cipher. Our design uses a four-stage Feistel-Network, 

which can perform encryption/decryption within 2 cy- 

cles and incurs negligible storage overhead. 

3) We propose CEASER (CEASE with Remapping), 

whereby the keys are changed periodically and the con- 

tents of the cache are gradually remapped from the old- 

key to the new-key. We perform analysis to determine 

the rate of remapping and show that remapping one line 

every 100 accesses is sufficient for strong security. 

Our evaluation with 134 workloads shows that CEASER 

incurs a slowdown of only 1.1%. The newly added structures 

of CEASER incur a storage overhead of less than 24 bytes. 

CEASER provides strong security (tolerates 100+ years of 

attack) and does not require any OS/software support. 
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Fig. 2. Example of ”Prime+Probe” cache attack. The attacker uses lines A and B to infer that the victim application accessed Set 0 
 

II. BACKGROUND AND MOTIVATION 

Modern processors share the last-level cache (LLC) and 

are vulnerable to attacks whereby a spy can learn the ac- 

cess pattern of a victim application by carefully orches- 

trating cache evictions. Eviction-based cache attacks can be 

broadly classified into two categories: Flush-based attacks (e.g. 

Flush+Reload attack [12]) and Conflict-based attacks (e.g. 

Prime+Probe attack and Evict+Time attack [13]). Flush-based 

attacks target accesses to the memory locations that are shared 

between the attacker and the victim. The attacker flushes a 

shared line using the clflush instruction, waits, and then checks 

the timing of a later access to that line – if the access incurs 

shorter latency, then the attacker can infer that the victim 

application has accessed the line. Flush-based attacks can be 

mitigated by avoiding the sharing of security-critical data [14] 

or by restricting the use of clflush to kernel mode [15]. In this 

work, we focus on mitigating conflict-based attacks and use 

Prime+Probe attack [13], [16] as a representative example. 

 

A. Conflict-Based Cache Attacks: An Example 

In conflict-based attacks, the attacker tries to determine 

Examples of randomized mapping includes RPCache [4] 

and NewCache [8]. These solutions randomize the location of 

the line (set) in the cache and use a table to keep track of 

the mapping. For example, the NewCache design [8], shown 

in Figure 3(b), uses a Random Mapping Table (RMT) to 

track the line-address to cache-address mapping. To avoid 

attacks on the RMT, the applications must be classified into 

two categories: protected and unprotected. Each protected 

application gets a unique RMT-ID which is used to access 

the RMT. Unprotected applications access the cache directly, 

without any indirection. The problem with such Table-Based 

Randomization schemes is that the size of the mapping tables 

must be scaled linearly with the number of lines in the cache 

and the number of concurrently running protected applications. 

While such tables may be practical for a small cache (L1), 

they become impractically large for LLC (e.g.for a 8MB 

LLC, the mapping table would exceed 1MB). Furthermore, 

the effectiveness of these schemes is heavily dependent on 

the ability of the OS to mark applications as protected or 

unprotected. Ideally, we want to avoid the storage of large 

tables and have a solution that does not require OS support. 

Logical 

the cache sets have been accessed by a victim program. For 

example, in the Prime+Probe attack [13], the attacker fills a 

cache set with its own lines (Prime step), waits for the victim 

Cache Random 

Mapping 
Table (RMT) 

DM Cache 

to perform its accesses (wait step), and then accesses the set 

again to determine which cache sets have been accessed by 

the victim (Probe step). Figure 2 shows an example of such a 

Prime+Probe attack on a two-way cache. The attacker places 

lines A and B in Set 0, and waits. The victim accesses a line 

Protected 

LineAddr T1 

RMTID (Tx) T2 
Tn 

Unprotected 
Application 

LineAddr 

(say line V) that maps to Set 0, which evicts line B. At a 

later time, the attacker can access A and B, and measure the 
(a) Preserve Lines (b) Randomized Mapping 

time. Given the long-latency now required for B, the attacker 

can infer that the victim accessed Set 0. Knowing the access 

pattern of an application can leak secret information [3]. 

 

B. Prior Mitigation Approaches 

Prior approaches for mitigating conflict-based attacks rely 

on either preserving victim lines, or on randomized mapping 

of victim lines to cache locations, as shown in Figure 3. 

Examples of preservation based approach include PL- 

Cache [4] (lock lines of sensitive application in the cache) 

and Non-Monopolizable Cache [5] (reserve a few ways of 

the shared cache for each core). Such approaches results in 

inefficient use of cache space, as cache is reserved for the 

application/cores regardless of the reuse characteristics of the 

cache line. Ideally, we seek efficient utilization of cache space. 

Fig. 3. Prior solutions (a) preservation-based (b) randomization-based 

 
C. Goal and Insight 

The goal of this paper is to develop a practical solution to 

mitigate conflict-based attacks. For a solution to be useful, it 

is important that it not only provides strong protection against 

attacks but also has (1) Low performance overheads, (2) Low 

storage overhead and simple implementation, (3) No reliance 

on OS or software support, and (4) Localized implementation, 

which avoids changes to multiple subsystems. 

Our paper develops a practical solution based on random- 

ized mapping of lines to cache locations. The key insight in 

our work is to use encryption to perform randomization of the 

cache lines efficiently and obviate the need for any indirection 

table and OS support. We describe our solution next. 
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III. OPERATING CACHE ON ENCRYPTED ADDRESS SPACE 

Randomized mapping provides protection against conflict- 

based attacks by making it harder for the attacker to form 

an eviction set. Our solution leverages encryption to enable 

randomized mapping for the LLC in an efficient manner. Given 

the avalanche effect of encryption, lines that map to one set 

of a traditional cache would get scattered throughout the sets 

of the cache, and this mapping would be controlled by an 

encryption key. Our solution, CEASE (Cache Operated on 

Encrypted Address Space) is based on these principles. 

 
Access Coherence       DRAM Access       Writeback 

 

 
CEASE 

 
Fig. 4. Overview of CEASE. CEASE uses Low-Latency Block-Cipher 
(LLBC) to convert between PLA and ELA. The ELA is visible to (and within) 
the LLC, and all operations outside the cache continue to use PLA. 

 

A. Overview of the CEASE 

Figure 4 provides an overview of CEASE. Similar to a 

conventional cache, CEASE is accessed using the Physical 

Line-Address (PLA). CEASE uses a Low-Latency Block- 

Cipher (LLBC) to convert the b-bit PLA into a b-bit Encrypted 

Line-Address (ELA) uses this ELA to access the cache. With 

CEASE, the cache organization and hit/miss detection all 

remains unchanged – just that instead of receiving an access 

for a physical line-address A (which may get mapped to some 

Set X), the cache receives an access for an encrypted line 

address B (which may get mapped to a different Set Y). 

Internally, the tag-store entry of the cache continues to have the 

usual metadata such as valid bit, dirty bit, replacement state, 

coherence bits, and the tag. The tag-store and the data-store 

of the cache remain unchanged. 

If the accessed PLA is present in the cache, the cache 

indicates a hit and provides the data. On a miss, the cache 

may evict a dirty line, and this line must be written back to 

the memory. As the tag information in the cache is based on 

encrypted address, we must first convert it into the original 

physical address. Fortunately, the same LLBC circuit (with 

minor changes) can be used to perform decryption and convert 

the ELA to PLA. As the evicted line now has the original 

physical address, the line can be written to back to memory 

without the memory needing to know about the ELA. 

The encrypted address (ELA) is visible only to (and is 

present within) the LLC. The rest of the system remains 

oblivious to the presence of the ELA and continue to operate in 

a traditional manner using the PLA. Thus, coherence requests, 

store requests, prefetch requests, all continue to access the 

cache with only the PLA and without being aware of the 

ELA. CEASE internally converts the PLA to ELA to access 

the cache and re-converts ELA to PLA while interacting with 

the external systems (such as on writebacks to memory). 

B. Considerations for the Block-Cipher 

Block ciphers provide a one-to-one mapping from a B- 

bit plaintext to B-bit ciphertext. The number of bits that we 

want to encrypt (the line address) is usually quite small. 

For example, we consider a system with a 46-bit physical 

address space (capable of addressing up-to 64TB of memory), 

so the line-address is only 40 bits. We need a block cipher 

that efficiently converts a 40-bit PLA into a 40-bit ELA. The 

commonly used encryption algorithms, such as AES, operate 

at 128-bit to 256-bit granularity, and incur a latency of tens 

of cycles. We want a block-cipher that operates at low-width, 

is secure, and does not incur significant latency overheads. 

We observe that our usage of block cipher is different in a 

fundamental way, in that the adversary has no direct visibility 

to the ciphertext, so the adversary cannot memorize plaintext- 

ciphertext pairs, which is typically the biggest weakness of 

small-width block ciphers. For example, small-width block 

cipher (such as DES, which operates on 64-bits) are usually 

considered insecure because an adversary can either do a brute 

force search for the key or memorize plaintext-ciphertext pairs. 

Therefore, most of the secure block-ciphers (such as AES) 

have now moved to 128-bit or 256-bit blocks. Fortunately, 

in our case, the encrypted line-address is not visible to the 

adversary, so memorization-based attacks are not a concern, 

and we can use small-width block ciphers. We describe the 

design of our low-latency block-cipher (LLBC) next. 

C. Low-Latency Block-Cipher Using Feistel-Network 

One popular method to build block ciphers is the Feistel- 

Network [11]. Feistel-Networks are simple to implement, incur 

low-latency, and are widely used in encryption algorithms, 

such as the Data Encryption Standard (DES) [11] and Blow- 

Fish [17]. Feistel-Network has been studied extensively and 

theoretical work has shown that for well-chosen round func- 

tions, “having 3 stages is sufficient to make the block cipher 

a pseudo-random permutation, while 4 stages are sufficient to 

make it a strong pseudo-random permutation” [18]. Therefore, 

in our solution, we use a four-stage Feistel-Network. 

Figure 5 shows the logic for the four-stage Feistel-Network 

operating on a 40-bit line-address. Each stage splits the 40- 

bit input into two parts (L and R) and has an output which 

is split into two as well (L’ and R’). R’ is equal to L. L’ is 

computed using an XOR operation on R and the output of a 

Round Function (F) which accepts L and a randomly chosen 

key (K). Each stage requires a 20-bit key, which means the 

network requires one 80-bit key (one quarter for each stage). 

Install Prefetch (On LLC miss) Dirty Evicts 

Physical 
Line Address Hit/Miss Data 

Physical 
Line Address 

[Unchanged] 

B 
Key Key 

B B 

LLBC B 

PLA (encrypt) ELA 
LLBC 

ELA (decrypt) PLA 

(Evicted Line) 

 
LLC 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

70 

 

· 

· 

× 

  
PLA (40−bit) ELA (40−bit) Function F 

 

Fig. 5. A Low-Latency Block-Cipher (LLBC) implementation using four-stage Feistel-Network (the F function is based on a Substitution-Permutation Network) 
 

The round function (F) of the Feistel-Network need not be 

invertible. For the round function (F), we use a substitution- 

permutation network (SPN) that can provide obfuscation with 

low-latency and zero storage overheads. We assume that the 

SPN boxes are configured differently for each stage and they 

get fixed at design time. The S-Box in our design has 40-bit 

input and 20-bit output block that is configured such that each 

bit of the S-Box is computed as XOR of 20 randomly selected 

inputs. Figure 6(a) and (b) show the logical representation of 

the S-Box (for 4-bit input and 2-bit output) and the storage- 

free physical implementation. The P-Box routes one-bit of the 

input to one (randomly selected) bit of the output, as shown 

in Figure 6 (c) and (d), for 4-bit input and 4-bit output. The P-

Box does not incur any latency due to gate delays. 

E. Attack Model for the Static Design 

CEASE uses an encrypted address to scramble the memory 

to cache mapping, and this mapping depends on the encryption 

key. The key is initialized to a random value using a hardware- 

based PRNG (pseudo-random number generator) when the 

machine is powered up. So, even if the adversary learns 

the mapping of one machine, the adversary cannot use it to 

attack another machine (in fact, mapping learned for a given 

machine is no longer valid once that machine is restarted). 

Unfortunately, for a given uptime, the key remains constant, 

and hence the memory to cache-set mapping is constant. An 

adversary can use a timing-based attack to learn the mapping. 
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Fig. 7. An attack forms ”Eviction Set” for one cache set (a) LLC with 4-sets 
and 2-ways, (b) Equivalent bin-and-balls model used in our analysis. 

Even if the attacker does not know which line maps to which 

cache set, the attacker can form a group of L random lines and 

use a timing attack to check if any line of the L lines miss 

in the cache. A cache with S sets and W ways has a total of 

 
Fig. 6. Components of Substitution-Permutation Network. The (a) logical 
view and (b) physical implementation of an S-Box. The (c) logical view and 
(d) physical implementation of a P-Box. 

D. Storage and Latency Analysis of Proposed LLBC 

Computing each bit of the SPN incurs a delay of 5 two- 

input XOR gates, which means that each stage of the Feistel- 

Network has a delay of 6 XOR gates. Thus, for four-stages, 

the critical path delay will be 24 XOR gates, which can be 

computed within two clock cycles of even an aggressively 

pipelined processor (typically the clock cycle of modern 

processors is designed to perform 15-20 gate operations). The 

total storage for the proposed LLBC is 80-bits (for the keys). 

Note that the same hardware can be used to perform both 

encryption and decryption, with only minor changes to the 

sequence in which the operations are performed. So, we do 

not need two separate LLBC for encryption and decryption (it 

is shown separately in Figure 4 for simplicity for explanation). 

N = S W lines. However, L can be expected to be lower than 

N, due to the non-uniformity of lines to set mapping inherent 

in a random assignment (as shown in Figure 7(a), where five 

random lines are enough to cause an eviction in Set 2). 

We analyze the expected value of L using bins and balls 

analysis, as shown in Figure 7(b). Balls are randomly thrown 

into the bins until one bin overflows. Our baseline 8MB 16- 

way cache has 8192 sets, and we found that only 42% of the 

lines need to be in the attack to cause one eviction. Thus, the 

attacker can form a group of L = 0.42 N lines and check for 

an eviction. However, the attacker still does not know which 

of the L lines belong to the conflicting set. The attacker can 

learn this by sequentially removing one line from the L lines 

and checking if the remaining accesses are eviction-free, if 

so, the removed line maps to the conflicting set. To learn the 

eviction set, the attacker needs approximately L
2
 accesses [10]. 

Our baseline 8MB LLC has 128K lines (L=0.42 128K), so 

it takes an attacker only 22 seconds to learn the eviction set. 
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Fig. 8. Example of CEASER with gradual remapping for a cache with four sets (0-3). The subscript with the line denotes the EpochID with which the line 
was remapped. After every 200 access to the cache (tracked by the access counter, ACtr), all the lines of the set pointed by SPtr gets remapped based on the 
key of the next Epoch. The shaded area of the cache represents parts of the cache that have undergone remapping based on the key of the next epoch. 

 

IV. CEASER: DYNAMIC REMAPPING AND KEY CHANGE 

The weakness of CEASE is that it forms evictions sets at 

boot time and they remain static throughout, making it possible 

for an adversary to learn the eviction sets. If we change the 

lines that form the eviction sets periodically, it will make it 

much harder for an adversary to learn the eviction sets. Based 

on this insight, we propose CEASE with Dynamic-Remapping 

(CEASER), which accomplishes this by periodically changing 

the key and remapping the lines based on the new key. 
 

 
(a) 

 

(b) 

 
Fig. 9. Dynamic-Remapping in CEASER (a) Bulk-Remap (b) Gradual-Remap 

A. Overview of Dynamic-Remapping in CEASER 

CEASER divides the time into epochs and each epoch 

has its own key. In each epoch, CEASER uses the key of 

the epoch to perform encryption and decryption. Figure 9 

describes two designs for CEASER: (a) bulk-remapping and 

(b) gradual-remapping. In the bulk-remapping design, at the 

end of the epoch, the keys are changed and all the cache 

lines are remapped using the new-key (to perform remapping, 

the line is read, the encrypted line address is converted into 

physical address with the old key, this physical address is re- 

encrypted with the new key and installed in the cache, and the 

old location is invalidated). This design is impractical because 

it requires simultaneous remapping of all the lines. 
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The second design gradually remaps parts of the cache 

during the entire period using the key (NextKey) correspond- 

ing to the next epoch. By the time the epoch ends, all 

the lines in the cache get remapped using the NextKey, so no 

additional remapping is required at the end of the epoch. 

At the end of the epoch, the current key (CurrKey) is set to 

the NextKey and the NextKey is initialized to a random 

value. On each access, the incoming PLA is translated into an 

ELA using both the CurrKey and NextKey, and the 

appropriate one is chosen depending on whether that line has 

already been remapped using the NextKey. As the gradual-

remap based design spreads the remapping throughout the 

epoch, it is a more practical design. We use gradual-remap as 

the default design for implementation of CEASER. 

 
B. Practical CEASER via Gradual-Remapping 

The rate of remapping of the CEASER is regulated by 

a parameter Accesses-Per-Line-Remap (APLR). For practical 

reasons, CEASER performs remapping of all lines in the 

set at any given time. So, if we set APLR=K, CEASER would 

remap one set containing W ways every W K accesses. The 

entire cache containing N lines will get remapped after K N 

accesses, which is also the epoch period. 

To perform remapping, CEASER is equipped with two 

registers: Set-Relocation Pointer (SPtr) and Access-Counter 

(ACtr). The SPtr keeps track of which set in the cache that 

should be remapped next. ACtr is incremented on each 

access to the cache and determines when to trigger the next 

remap. 

Figure 8 shows an example of gradual mapping for a cache 

containing 4 sets (0-3). For simplicity, we assume five lines 

are resident in the cache (A, B, X, Y, Z). The subscript with 

the line denotes the encrypted address of the line based on 

the EpochID (so, A0 is the encrypted address of A with the 

key of EpochID=0, and A1 is the encrypted address of A 

based on the key of EpochID=1). The cache begins with 

SPtr=0, ACtr=0, and EpochID=0, as shown in Figure 8(a). We 

assume CEASER is set to remap one line every 100 accesses, 

so one set of the two-way cache will get remapped every 

200 accesses. 

After 200 accesses to the cache (ACtr=200), the lines resi- 

dent in Set 0 (A0, and B0) get remapped. CEASER performs 

decryption of the line address (A0 to A) using the CurrKey, 

re-encrypts the line with the key (NextKey) of the next epoch 

(A to A1), and installs this line (A1) in the cache using 

the 
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regular replacement policy. A1 goes to Set 2 and B1 goes to 

Set 1. The SPtr is incremented as shown in Figure 8(b). 

After another 200 accesses (ACtr=400), Set 1 undergoes 

relocation. Note that we need to relocate only X0 and not B1, 

as B1 corresponds to the next epoch. After remapping, X1 gets 

relocated to Set 0, as shown in Figure 8(c). 

After another 200 accesses (ACtr=600), Set 2 undergoes 

relocation and line Y0 gets remapped, as shown in Figure 8(d). 

After another 200 accesses (ACtr=800), Set 3 undergoes 

relocation and line Z0 gets relocated to Set 1 after getting 

remapped with NextKey. Note that now the entire cache has 

undergone remapping and contains lines that belong only to 

the next epoch. When this happens, the EpochID is incre- 

mented, Sptr and ACtr are reset, CurrKey is set to NextKey, 

NextKey is set to a random value, and the process repeats. 

With gradual mapping, lines from two different epoch 

(current and next) can co-reside in the cache at any given 

time. Therefore, the encrypted line address must be identified 

with the EpochID (EID) with which the line was remapped. 

Otherwise, two lines in a set can end up having the same 

encrypted address, one for the current epoch and one for 

the next epoch. For example, in Figure 8(b), if A1 equals 

Y0, and Y0 has not been remapped yet, we will have two 

lines with an identical encrypted address. However, if we also 

stored EID with each cache line, we can identify precisely 

which encrypted address belongs to which line. As only two 

EpochIDs can be valid at any given time (current or next), we 

need only one-bit (EID) to identify the EpochID of the line. 

We use a default value of APLR=100 in our design, which 

means the remapping overhead is limited 1% (on average, 

one line gets remapped per 100 accesses). Our analysis in 

Section V will show that this rate of remapping is sufficient 

to tolerate 100+ years of continuous attack. 

C. Cache Access with CEASER 

On an access to the LLC, we do not know if the line has 

been already remapped during this epoch or not. However, we 

can determine this by first performing the encryption using 

the CurrKey and checking if the set index of the line maps 

to a set that is yet to undergo remapping (set index is greater 

than or equal to SPtr). If so, we should use the mapping using 

the Currkey, otherwise use the mapping using the NextKey, 

as shown in Figure 10. Once the encrypted address and the 

corresponding EpochID (current or next) is available, the cache 

access/install can proceed in the normal manner – with the tag 

match on the encrypted line address (plus the EID). 
 

Fig. 10. Translating PLA to ELA using CEASER. Encryption is performed 

with both CurrKey and NextKey and the correct ELA to access the LLC. 
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D. Analyzing CEASER for a Banked Shared-Cache 

In our studies, we assume that there is no timing 

difference in access to different parts of the LLC. Some 

processor designs use a banked LLC, where the banks are 

connected via a ring, and access to different banks have 

different latencies. An adversary can exploit this timing 

differences to determine the line to bank mapping and focus 

the attack on one bank [10]. Our bank-agnostic 

implementation of CEASER would de- termine the line-to-

bank mapping based on the encryption key. However, if the 

designer wants the flexibility to regulate the line-to-bank 

mapping (using a proprietary function), then CEASER can 

still be implemented at a per-bank granularity, with each 

bank having its own remapping circuit. In both the bank-

agnostic and bank-aware implementations of CEASER, the 

effective size of the cache under attack would get reduced to 

one bank. For example, banking would degenerate our 8MB 

LLC into a 1MB LLC for the attacker. Fortunately, per 

the analysis shown in Section V (Table I), for a 1MB 16-

way cache, remapping one line every 100 accesses is still 

sufficient 

to provide strong security even for the banked design. 

V. SECURITY ANALYSIS OF CEASER 

For CEASER, the rate of remapping affects the time that 

the attacker has to learn about the mapping before the 

mapping changes. For security, we want the remapping to 

happen frequently, and to reduce the overheads of relocation, 

we want the remapping to happen infrequently. The rate of 

remapping is controlled by APLR (Accesses-Per-Line-

Remap), which we denote as K. We use a default value of 

K=100 in our design, which means the remapping overhead 

is limited to 1% (one line gets remapped per 100 accesses). 

We analyze if this rate of remapping is sufficient for strong 

security. 

A. Attack Model and Assumptions 

We make the following (severely conservative) assumptions: 

1) Simply knowing the eviction set of one of the cache-set 

is sufficient to declare the attack successful (even 

though this may not be the same set shared by the 

victim). 

2) The lines in the attack do not get remapped during the 

entire epoch (the gradual move of CEASER would 

cause some attack to get relocated but to simplify the 

analysis we make the assumption of bulk remapping). 

3) No other application accesses the cache during the 

epoch period (otherwise, those accesses can cause the 

epoch to end earlier and the attacker will be able to do 

only a reduced fraction of total accesses in the 

epoch). 

4) The adversary has enough time to not only form 

an eviction set but also to infer the information of the 

victim (if most of the epoch goes in forming an eviction 

set, it would leave very little time to attack the 

victim). 

We also assume an idealized encryption algorithm which 

can randomly map a given line to any arbitrary location in 

memory with an equal probability (in Appendix-A, we perform 

an Avalanche Test on our proposed LLBC to demonstrate that 

even a 1-bit difference in the physical address space causes a 

large number of bits to change in the encrypted address space). 
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B. Analytical Model for Attack 

Let there be N lines in the cache, organized as S sets and W 

ways. Let CEASER be set to remap one line every K accesses 

to the cache, so the epoch period will be K N accesses. To 

attack the cache, the adversary can form a group of L random 

lines, and test if any of these lines miss in the cache. Using 

the bins-and-balls analysis, we can estimate the fraction of 

the total cache lines (F) that must be attacked (L = F N) to 

encounter one of the L lines that misses (similar to Figure 7). 

Once the attacker forms a group of lines, at least one of which 

missed in the cache, the attacker can remove one line and test 

if the miss still happens. If the miss did not happen, then the 

removed line is part of the eviction set, otherwise, it is not. 

This process is repeated for all L lines to learn the eviction 

set of one of the (unknown) set of the cache. At each step, the 

timing test is done at least R times to get a reliable estimate. 

To launch this attack the adversary would need R L
2
 accesses. 

The attack would not succeed if all the lines in the attack are 

guaranteed to get remapped before the adversary can perform 

R· L2
 accesses. So, we can bound the epoch period as follows: 

E poch Period < R · L2
 (1) 

The number of lines (L) in the attack represents a fraction 

(F) of the total cache lines. So, 

 

K · N < R · (F · N)2
 (2) 

Therefore, 

K < R · F2
 · N (3) 

To estimate F, we again use the bins-and-balls analysis. We 

leverage the observation the number of balls in a given bin 

follow a Poisson process, when the balls are thrown at random. 

In particular, if the average number of balls per bin is λ , then 

the probability that a given bin has B balls is given by: 

e−λ · λ B 
 

 

 
   

TABLE I 
TIME FOR  ATTACK  TO  SUCCEED  WITH  CEASER. 

 

Accesses-Per-Line-Remap 8MB LLC 1 MB Bank of LLC 

100 (default) > 100 years > 100 years 

200 > 100 years 21 years 

500 > 100 years 16 days 

1000 > 100 years 5 hours 

2000 37 years 5.2 minutes 

No-Remap (CEASE) 22 seconds 0.4 seconds 

 

 

Thus, remapping is crucial for the security of CEASER. 

Without remapping, the attack succeeds in less than one 

minute (and the exposed lines continue to remain vulnerable). 

With remapping, the attacker needs 100+ years to expose one 

set (and that too only for a few microseconds). Furthermore, 

CEASER is even more effective for larger caches because the 

number of accesses required to learn the eviction set increases 

approximately in proportion to N
2
 [10] (N is the number of 

lines in the cache), whereas the time to remap the entire cache 

increases only linearly with N. 

 
VI. EXPERIMENTAL   METHODOLOGY 

A. Configuration 

We use a Pin-based x86 simulator with a detailed memory 

model. Table II shows the configuration used in our study. The 

L3 cache is 8MB shared between all the cores and incurs a 

latency of 24 cycles. All caches use a linesize of 64 bytes. For 

CEASER, we encryption latency of 2 cycles and APLR=100. 

TABLE II 
BASELINE   CONFIGURATION 

P(bin has B balls) = 
B! 

(4) 

We are interested in a set having more lines mapped to it 

than the associativity of the cache (for our 16-way LLC, we 

are interested in the set having 17 or more lines). We can use 

Equation 4 to determine the average number of ways that must 

be full for one of the set to overflow (with a given probability), 

and use this information to determine the fraction F. 

C. Time for Successful Attack 

The resilience of CEASER to attacks is dictated by the 

rate of remapping – the quicker the remap, the less time 

the adversary has to learn the mapping. Table I shows the 

time for a successful attack, as the rate of remapping of 

CEASER is changed from 100 (default) to 2000. We perform 

this analysis for both the baseline 8MB cache and a 1MB bank 

(attacker focuses on 1 bank, CEASER implemented per bank). 

Furthermore, we conservatively assume R=2 (only two trials 

are needed to get an accurate estimate of the timing, instead 

of the tens/hundreds that are typically required). 

Processor 

Core parameters 
L1 and L2 cache 

8-cores, 3.2GHz 
32KB, 256KB 8-way (private) 

Last Level Cache 

L3 (shared) 8MB, 16-way, 24 cycles 

DRAM Memory-System 

Bus frequency 
Channels 
tCAS-tRCD-tRP-tRAS 

800 MHz (DDR 1.6 GHz) 
2 (8-Banks each, 2KB row buffers) 
9-9-9-36 
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B. Workloads 

We use a diverse set of workloads for our study, including 

all the 29 workloads from the SPEC2006 benchmarks 

suite and 5 workloads from the GAP benchmark suite 

[19]. For each benchmark, we use a representative slice [20] 

of 1 billion instructions. These 34 benchmarks are run in rate-

mode where each core runs a copy of the benchmarks. 

Additionally, we use 100 mixes formed randomly from these 

34 benchmarks. 

We perform timing simulation until all benchmarks in the 

workload finish executing a minimum of 1 billion 

instructions. For measuring aggregate performance, we use 

the weighted speedup metric. We report normalized 

performance as the ratio of weighted speedup of the 

proposed design to the baseline. 
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Fig. 11. Normalized performance of CEASE (no remapping) and CEASER for the rate-mode workloads (top) and mixed-workloads (bottom). For the 34 rate-
mode workloads, CEASE and CEASER incur an average performance loss of 0.32% and 0.74% respectively. Across all 134 workloads the average 
performance loss is 0.68% and 1.1% respectively. 

 

VII. RESULTS AND ANALYSIS 

 
A. Impact on Performance 

 

There are three sources of performance impact of CEASER. 

First, potential change in cache miss-rate because of the 

change in the group of lines that get mapped to a given set of 

the cache, which alters the conflict misses (this can sometimes 

improve hit rate and sometimes degrade hit rate, although the 

B. Sensitivity to Encryption Latency 

 
CEASER utilizes low-latency block-cipher (LLBC) to per- 

form encryption and decryption. The algorithm is chosen to 

minimize the latency of such translations, while exploiting 

the fact that the adversary does not have a direct access 

to the encrypted value. We use a latency of 2 cycles for 

encryption/decryption, based on the estimated logic delays. 

overall impact is negligible). Second, the increase in access 0 cycle 1 cycle 2 cycles 3 cycles 4 cycles 

latency of the cache due to the latency of the encryption 

process (translating the physical line-address into an encrypted 

line-address). And, third, extra misses incurred due to the 

relocation of lines as such relocated lines can evict a useful line 

from the set where the line got remapped to (albeit by design, 

such relocations are done at a rate of 1 every 100 accesses, so 

the impact on miss rate due to relocation is bounded to 1%). 
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Gmean-Rate(34) Gmean-Mix(100) Gmean-All(134) 

Figure 11 shows the performance of CEASE (design with- 

out dynamic remapping) and CEASER (with dynamic remap- 

ping) for 34-rate workloads and 100 mixed workloads. Note 

that the performance is normalized to the baseline (so higher is 

better, and 100% denotes no degradation). For the rate-mode 

workloads, CEASE and CEASER cause an average perfor- 

mance loss of 0.32% and 0.74%, respectively. Sphinx3 sees a 

2% improvement because of the reduction in conflict misses. 

Overall, across all 134 workloads, CEASE and CEASER incur 

a slowdown of only 0.68% and 1.1% respectively. 
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Fig. 12. Impact of the latency of encryption on the performance of CEASER. 

 
 

Figure 12 shows the performance of CEASER as the 

latency of encryption is changed from 0 cycles to 4 cycles. 

With a zero-cycle latency overhead, we could reduce the 

performance loss of CEASER to 0.5%, whereas with a 4-

cycle latency, the performance loss would be 1.75%. Thus, 

the performance overhead can still be reduced further using 

lower latency implementations of block ciphers. 
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8MB 16MB 32MB 64MB 

C. Impact of CEASER on LLC MPKI and Miss-Rate 

CEASER affects cache misses due to randomization (which 

can affect conflict misses, either positively or negatively) and 

remapping (the remapped line may evict a useful line from 

the remapped set). We analyze the impact of CEASER on the 

miss-rate and MPKI (misses per 1000 instructions) of the LLC. 

Table III shows the miss rate and MPKI of the baseline 8MB 

LLC and with CEASER, for the 34 rate-mode workloads. 

 
TABLE III 

IMPACT OF CEASER ON THE MPKI AND MISS-RATE OF LLC (8MB). 

D. Sensitivity to Remapping Interval 

The rate of remapping of CEASER is regulated by the 

parameter APLR (Accesses-Per-Line-Remap). In our default 

implementation of CEASER, we use an APLR=100, which 

means one cache line gets remapped every 100 accesses to 

the cache (for simplicity, we remap one set of a W-way cache 

every 100*W accesses). We showed that this rate is sufficient 

to provide strong security and that the performance overhead 

with this rate of remapping is quite small (almost 1%). 
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Fig. 13. Impact of the remapping frequency on slowdown of CEASER. 
Increasing remap frequency by 4x increases slowdown from 1.1% to 1.2% 

 

Figure 13 shows the performance of CEASER normalized 

to the baseline, for an APLR of 25, 50, and 100 accesses. The 

impact of reducing the APLR is quite small, as performance 

loss of CEASER increases from 1.1% to 1.2% if the APLR is 

reduced from 100 to 25. So, a designer may choose to reduce 

APLR somewhat and still not incur significant slowdown. 

E. Sensitivity to LLC Capacity 

Our default configuration contains an 8MB shared LLC. In 

this section, we study the performance sensitivity of CEASER 

for different sizes of LLC. Figure 14 shows the normalized 

performance of CEASER when LLC is varied from 8MB to 

64MB (performance is normalized against the baseline with 

an equal-capacity LLC). Across all LLC sizes, the average 

slowdown of CEASER is between 1% and 1.5%. Thus, 

CEASER incurs negligible slowdown even for large LLCs. 
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Some low-MPKI workloads (such as astar and gobmk) see a 

noticeable increase in MPKI, however, given these workloads 

are low-MPKI, the impact on performance remains negligible. 

For sphinx3, we notice that randomization causes the MPKI to 

get reduced from 11.6 in the baseline to 11.1 with CEASER, 

and this 5% reduction in MPKI causes improved performance 

of CEASER compared to the baseline. Overall, CEASER has 

only a negligible impact on the missrate of the LLC, increasing 

it from 70.5% to 71.7%, and also a negligible impact on MPKI, 

increasing the average MPKI from 19.5 to 19.6. 

Fig. 14. Performance Impact of CEASER for systems with larger LLC. 

 

F. Analyzing Other Overheads: Logic, Storage, and Power 

Logic: CEASER requires two LLBC circuits and selection 

logic to select between these two circuits. Each LLBC with 

our proposed design requires approximately 1680 two-input 

xor gates, and the selection logic requires approximately 100 

two-input gates. So, the total logic overheads of CEASER is 

less than 3500 two-input gates, which is quite small (similar 

to computing SECDED code for a 64-byte line). 
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Workload 
Name 

MPKI 
Baseline 

MPKI 
CEASER 

MissRate(%) 
Baseline 

MissRate 
CEASER 

astar 0.5 0.7 21.5 27.8 

bwaves 18.7 18.7 100 100 

bzip2 3.5 3.6 52.6 56.8 

cactusADM 5.3 5.2 97.7 96.6 

calculix 0.0 0.0 68.5 68.7 

dealII 2.5 2.4 65.7 66.4 

gamess 0.0 0.0 3.4 3.8 

gcc 16.3 16.7 80.9 82.8 

GemsFDTD 9.8 9.8 92.8 93.2 

gobmk 0.4 0.4 28.2 33.3 

gromacs 0.6 0.6 35.6 37.5 

h264ref 0.5 0.6 35 42.6 

hmmer 0.5 0.8 17.5 28 

lbm 31.9 31.9 99.9 99.8 

leslie3d 7.6 7.6 91.5 92.1 

libquantum 25.4 25.4 100 100 

mcf 67.6 68.8 72.4 73.8 

milc 25.8 25.6 99.8 99 

namd 0.1 0.1 72 73 

omnetpp 20.9 21.1 87.7 88.2 

perlbench 0.8 0.8 46.7 48 

povray 0.0 0.0 2.2 2.2 

sjeng 0.4 0.4 87.3 87.5 

soplex 26.9 26.9 97.7 97.7 

sphinx3 11.6 11.1 89.4 85.5 

tonto 0.1 0.1 4.9 7 

wrf 6.6 6.5 97 96.8 

xalancbmk 2.2 2.2 68.9 69.9 

zeusmp 4.8 4.8 96.4 96.3 

BC 84.5 84.5 98 98.1 

BreadthFS 37.2 37.3 96.7 96.8 

ConnComp 85.7 85.9 95.7 96 

PageRank 46.0 46.2 94.6 94.9 

SSSPath 118.8 119.0 98 98.1 

Average 19.5 19.6 70.5 71.7 
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Storage for New Structures: The storage overhead of the 

LLBC is quite small (80 bits for the keys). CEASER needs 

two such keys. CEASER also requires a 13-bit SPtr pointer 

(for an 8MB 16-way cache), a 13-bit Access Counter (ACtr) 

and a 1-bit EpochID. The total storage overhead for the newly 

added structures of CEASER is less than 24 bytes. 

Per-Line Storage: CEASER also requires that each cache line 

be appended with a 1-bit EID to denote the EpochID whose 

key was used for encrypting the line address. 

Energy and Power Overheads: The power overheads of 

CEASER comes from the encryption circuit, the remapping 

of lines (one line per 100 access), and the extra misses (0.4% 

higher memory traffic). With CEASER, the overall system 

power increases by approximately 0.2% and the overall system 

energy by less than 1% (mainly due to the slight slowdown). 

VIII. RELATED WORK 

Our paper focuses on developing efficient mitigation solu- 

tions for conflict-based attacks. There are several prior works 

that have investigated this problem. In this section, we discuss 

the prior work, comparing and contrasting where appropriate. 

A. Preservation-Based Mitigation Techniques 

Preservation-based techniques rely on preserving the data of 

the victim application, by making it harder for the attacker to 

evict the data of the victim application. This is typically done 

by allocating dedicated cache space to protected (security- 

sensitive applications). For example, PLCache [4] uses cache 

line locking to lock the lines of the protected applications. 

CATalyst [21] uses the Cache Allocation Technology (CAT) 

to reserve a given number of ways for the security-sensitive 

applications. And, StealthMem [22] uses page-coloring to 

ensure that sensitive data gets mapped to cache sets that do 

not receive contention from other applications. The efficacy 

of all these schemes rely on the ability of the OS to carefully 

classify applications into protected and unprotected groups, 

and use the cache preservation only for the protected groups. 

Ideally, we want to mitigate attacks without relying on any 

OS or software support. Furthermore, these solutions do not 

use cache space efficiently, as cache resources are used for the 

protected applications, regardless of the reuse. 

Non-Monopolizable (NoMo) Cache [5] allocates a fixed 

number of ways to each core, and performs dynamic parti- 

tioning only on the remaining ways. While NoMo can protect 

victim lines from getting evicted, NoMo becomes impractical 

for the LLC, given that the LLC is shared by a large number 

of cores. For example, our baseline 16-way LLC is shared by 

8-cores, and reserving even 1-way for each of the core would 

make half of the LLC unavailable for dynamic partitioning, 

leading to inefficient use of the LLC resources. Nonetheless, 

an SMT-based system can still use NoMo for the L1 and L2 

cache (private) and CEASER for the LLC. 

Recent studies [15], [23] have exploited the inclusion prop- 

erty of LLC to provide preservation. For example, Relaxed 

Inclusion Cache (RIC) [23] classifies the working set into 

private, read-only, and critical pages and relaxes inclusion for 

a subset of the working set. RIC requires OS support for classi- 

fication, changing the way how coherence requests are handled 

(snoop filters), and requires cache flush on thread migration. 

Ideally, we want to avoid these changes and the need for OS 

support. SHARP [15] avoids selecting a replacement victim 

in the LLC that is present in the L1 or L2, and when this 

happens it tries to select another victim. After a certain number 

of such trails, if a victim is not found then a random victim is 

chosen. SHARP counts such episode of random victim with 

an AlarmCounter, and informs the OS of a possible attack if 

the AlarmCounter exceeds a certain threshold. Thus, SHARP 

requires (a) changes to the on-chip network to send query 

between the LLC and the L1/L2 for replacement victim, and 

(b) OS support to handle the AlarmCounter (and a policy for 

false positives). Ideally, we want to mitigate attacks without 

requiring any OS support. 

B. Randomization-Based Mitigation Techniques 

Randomization-based techniques rely on randomized map- 

ping of the memory line to the cache set, thereby making 

it harder for the adversary to form an eviction set. Prior 

proposals [4], [8] use mapping tables to track the location 

of the line (or the set) in the cache. For example, RPCache 

[4] moves all lines belonging to a protected application 

from one set to another randomly selected set and uses a 

Permutation Table (PT) to remember the set-to-set mapping. 

NewCache [8] performs randomized mapping on a per-line 

granularity, whereby a line is mapped to a set in the direct- 

mapped cache and a Random Mapping Table (RMT) is used 

to track the line-address to cache-location mapping. 

The disadvantage of such table-based randomization 

schemes is that the mapping tables must scale linearly with the 

number of lines in the cache and the number of concurrently 

running protected applications. While such tables can be 

implemented efficiently for small L1 caches [8], they become 

impractically large for a multi-megabyte LLCs. Furthermore, 

the effectiveness of these schemes relies on the OS-based 

classification of applications into protected and unprotected 

(otherwise, the mapping table can be attacked). Table IV shows 

the storage overheads of table-based randomization (TBR), 

with OS support (shared mapping tables) and without OS 

support (private per-core mapping tables), and CEASER. 

TABLE IV 
STORAGE  OVERHEAD  OF  ADDITIONAL  STRUCTURES  (FOR  8MB LLC). 

 

Scheme Storage Overheads 

Table-Based (with OS support) 1.25 megabytes 

Table-Based (without OS support) 8.5 megabytes 

CEASER (OS support not required) 24 bytes 

TBR requires mapping tables exceeding 1MB (with OS 

support) or exceeding the capacity of the LLC (if no OS 

support is provided). CEASER, not only incurs negligible 

storage but also avoids the latency of looking up large mapping 

tables. Thus, CEASER has lower storage, better performance, 

and no reliance on OS support, which makes it feasible to 

incorporate randomization in large LLCs. 
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Fig. 15. Avalanche Test for demonstrating the diffusion property of the proposed LLBC. We flip a random bit of the physical line address and measure the 
hamming distance change in the ciphertext of LLBC. Feistel-Network with 3 stages (red circle) or 4 stages (dotted-line) provide bit-flips close to an ideal 
encryption (bar graph). However, having only two stages in the Feistel-Network is insufficient to provide close-to-ideal bit-flips for the Avalanche Test. 

 

C. Software-Based Mitigation Techniques 

Cache attacks can be mitigated by rewriting the security- 

sensitive applications to not keep critical information (such as 

encryption tables) in memory and instead compute the critical 

information on-the-fly [13], [24]. Unfortunately, such imple- 

mentations tend to be 2x to 4x slowdown [24]. Our solution 

avoids the effort in identifying critical pieces, rewriting the 

software, and the slowdown of such methods. 

D. Randomized Addressing for Cache and Memory 

Prior studies [25]–[28] have used XOR-based indexing 

functions for reducing conflicts in cache-sets and memory- 

banks. However, such functions can be learned by an adversary 

using timing-based attacks. Once the attacker obtains the 

mapping for one machine, the attacker can use the information 

to attack other machines that use the same mapping functions. 

Start-Gap Wear-Leveling [29], [30] of non-volatile mem- 

ories used Feistel-Network for static randomization of the 

entire memory space, however, with Start-Gap the keys for the 

Feistel-Network remains unchanged during the system uptime. 

IX. CONCLUSION 

To mitigate conflict-based cache attacks, this paper proposes 

an efficient design that randomizes the memory line to cache 

location mapping without relying on storage-intensive indirec- 

tion tables or OS support. Our solution, CEASER, accesses the 

cache with an encrypted line-address and performs periodic 

remapping of the address space to limit the time the adversary 

has to learn the mapping. CEASER provides strong security 

(tolerates 100+ years of continuous attack), has low perfor- 

mance overhead (1% slowdown), requires a storage overhead 

of less than 24 bytes for the newly added structures, and 

does not need any support from the OS/software. While we 

analyzed CEASER only for a shared LLC, CEASER can also 

be used to protect against attacks on other shared structures, 

such as against directory-based attacks [31]. Exploring such 

extensions are a part of our future work. 

APPENDIX-A: AVALANCHE TEST FOR LLBC 

Claude Shannon identified confusion and diffusion as the 

two vital properties for a secure cipher [32]. Confusion is the 

property that the ciphertext should depend on several bits of 

the key, thus obscuring the connections between the two. In 

our proposed implementation of LLBC, each bit of the SPN 

is dependent on half of the bits of the respective key, thus 

satisfying the property of confusion. Diffusion is the property 

that the change of even a single bit of the plaintext should 

(statistically) change half of the bits in the ciphertext.
1
 

In this section, we demonstrate the diffusion property for 

our proposed implementation of LLBC, using an Avalanche 

Test [33], [34]. We take a random 40-bit PLA (P1) and com- 

pute the encrypted output (E1). Then, we randomly flip one bit 

of the PLA (P2) and recompute the encrypted output (E2). We 

compute the hamming distance between the encrypted outputs 

(E1 and E2). For an ideal encryption algorithm, we expect 

close to half of the bits of the encrypted output to change. 

To compute the hamming distance for an ideal encryption, 

we model each bit flip as a Bernoulli random variable with 

probability p = 0.5 across 40 bits. For our proposed LLBC, we 

perform the Avalanche Test using 1 million Monte-Carlo trials 

(1000 different random configuration of the LLBC are used 

and for each such design we perform the test for 1000 random 

values). Figure 15 shows the percentage of times the number 

of bits in the encrypted value changed by a given amount (from 

0 to 40 bits). The bar graph shows the variation expected for 

an ideal encryption. We show the data for Feistel-Network of 

Figure 5 with 2-stages, 3-stages, and 4-stages. With a 2-stage 

Feistel-Network, the number of hamming distance change in 

the encrypted output is less than ideal (10-12 bits flip instead 

of 18-22 bits). However, with a 3-stage or a 4-stage Feistel- 

Network, we get diffusion close to ideal encryption. Thus, 

Feistel-Network with 3-stages (delay of 18 gates, or only 1 

cycle) or 4-stages (delay of 24 gates, or 2 cycles) are sufficient 

for providing strong diffusion. Nonetheless, CEASER can be 

implemented with alternative designs of block-ciphers as well. 

1Diffusion causes the lines that are conflicting in the Physical Address 
Space (PAS) to get scattered randomly in the Encrypted Address Space (EAS). 
For example, consider an alternative circuit that computes EAS=XOR(PAS, 
Key). This circuit does not provide a good amount of diffusion as one bit-flip 
of PAS causes exactly one bit-flip in the EAS. If two PAS lines A and B form 
eviction set on say Cache-Set-X, then with such a circuit, (A XOR Key) and 
(B XOR Key) will still form an eviction set (on some other Cache-Set-Y). 
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