
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

66

Sectarian strife Cache Challenges Mitigation Using

Secure data Address and Reconfiguring (CEASER)

Dr. Chinmay R. Pattanaik
1
*, Dr. B.Purna Satyanarayana

2

1
*Assosiate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

chinmayaranjan@thenalanda.com*, bpurnasatyanarayana@thenalanda.com

Abstract— To effectively utilise the cache, modern processors
divide the last-level cache among all of the cores. Unfortunately,
this kind of cache sharing leaves it susceptible to attacks where a
malicious party deliberately orchestrates evictions utilising cache
conflicts in order to learn the access patterns of a co-running
programme. By randomly placing the lines in the cache, conflict-
based attacks can be lessened. The OS must be able to divide the
apps into protected and unprotected groups for the preceding
randomised mapping suggestions to work, which unfortunately
requires storage-intensive tables. With little storage and
performance overheads and without relying on OS support, the
objective of this study is to minimise conflict-based assaultsThis
study offers the crucial discovery that randomised mapping can
be efficiently performed by accessing the cache with an
encrypted address, as encryption would cause the lines of a
conventional cache that map to the same set to be dispersed to
separate sets. In this study, CEASE, a design that converts the
physical line address into an encrypted line address using the
Low-Latency Block-Cipher (LLBC), is proposed. This encrypted
line address is then used to access the cache. We examine LLBC
designs that are effective and can execute encryption and
decryption in just two cycles. In order to increase robustness, we
also suggest CEASER, a design that dynamically remaps and
changes the encryption key on a regular basis. CEASER has
robust security (tolerates attacks for more than 100 years), little
performance overhead (1% slowdown), and little storage
overhead Less than 24 bytes are required for the newly
introduced structures, and no OS support is required.

I. INTRODUCTION

Caches alleviate the long latency of main memories by

providing data with low latency. Unfortunately, the timing

difference between the cache-hit and a cache-miss can be used

as a side-channel by an adversary to infer the access pattern

and obtain unauthorized information from the system. The

recently disclosed Spectre [1] and Meltdown [2] vulnerabilities

rely on such cache-based side channels to convert the unautho-

rized data value into a discernible information. While cache

attacks have been demonstrated in the past at a smaller scale,

the recent vulnerabilities show that cache attacks can affect

hundreds of millions of processor systems, and highlight the

need to develop efficient solutions to mitigate cache attacks.

Conflict-based cache attacks are an important class of cache

side-channels, where an adversary can carefully orchestrate

cache evictions to learn the access pattern of a co-running

application, and use this access pattern to infer secrets (such

as AES keys [3]). Conflict-based attacks are feasible when

the adversary and the victim share some storage structures.

Modern processors pack multiple cores on a single chip and

tend to keep the level-1 (L1) and level-2 (L2) caches private

to the core. However, the last-level cache (LLC) is typically

shared between all the cores to efficiently utilize the cache

space. Unfortunately, such sharing makes the LLC vulnerable

to cache attacks as an adversary can learn about the access

pattern of the victim using LLC evictions, even when the

adversary and the victim are executing on different cores. The

goal of our paper is to efficiently protect the LLC against such

attacks without relying on any software support.

Architectural solutions to mitigate conflict-based cache at-

tacks broadly fall in two categories. First, preservation-based

mitigation [4]–[7], whereby the lines of the victim are pre-

served within the cache, making it harder for the adversary to

dislodge the content of the victim. Unfortunately, dedicating

portions of the LLC for each core results in inefficient use of

cache space. Second, randomization-based mitigation [4], [8],

whereby the location of the line in the cache is determined

randomly and this information is stored in a table. To protect

the mapping table from being attacked, the OS is required to

group the applications into protected and unprotected groups

and only the protected applications are allowed to use the

mapping table and randomization. While such Table-Based

Randomization may be feasible for L1 cache, the size of the

mapping tables becomes impractically large for the LLC, as

the number of entries in the mapping table increases linearly

with the number of cache lines and the number of concurrently

running protected applications. Furthermore, the efficacy of

prior randomization-based scheme is dependent on the ability

of the Operating System (OS) to correctly classify applications

into protected and unprotected groups. Ideally, we want a

solution that does not incur the storage overhead of large

indirection tables and does not require any OS support, and

yet provides high performance and strong security.

To develop a practical solution against conflict-based cache

attacks, we focus on the set indexing function of the cache,

as this function determines the group of lines that get mapped

to a given set. To successfully launch an attack, the adversary

must find lines that map to a given set – the group of lines that

map to the same set of the cache and can cause an eviction is

called an Eviction Set. The LLC is accessed with a physical

line-address (PLA). Conventional LLC designs use a static

hash-function (bottom few bits of the PLA) to determine the

set, as shown in Figure 1(a), which means an adversary can

easily form an eviction set. Even if a complex hash-function

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

67

Set

hash

Line Address

Eviction

(a) Traditional Cache

(b) CEASE

t1 t2

(c) CEASER (Dynamic−Remapping)

time

Fig. 1. Mapping of memory lines to the cache locations (a) conventional systems rely on static hashing to determine cache index (b) CEASE encrypts the
the physical line-address and uses it to index the cache – the mapping of memory lines to cache index depends on the Encryption-Key (d) CEASER changes
the key periodically and performs dynamic remapping, which limits the duration for which the memory line to cache index mapping remains constant.

is used and it is not revealed to the users, an adversary can

use timing attacks to determine the eviction set for such a

design [9], [10]. Once an adversary infers the mapping for

one machine, the adversary can use this information to attack

all machines that use the same hashing function.

We provide the key insight that randomized mapping of

memory lines to cache locations can be accomplished effi-

ciently by operating the cache on an Encrypted Address Space

(EAS) instead of the Physical Address Space (PAS), as shown

in Figure 1(b). The avalanche effect of encryption would

cause lines that have spatial correlation in the PAS (such as

those mapping to the same set of the cache) to get scattered

throughout the space in EAS. This scattering would happen in

an unpredictable fashion, and gets dictated by the Encryption-

Key. For example, lines A and E were mapped to the same Set

in Fig 1(a), however, in Figure 1(b) A and E get mapped to

different sets, and for another key they would get mapped to

some other sets. Leveraging this insight, we propose CEASE,

a Cache operated on Encrypted Address-Space.

CEASE employs a Low-Latency Block-Cipher (LLBC) to

convert the b-bit Physical Line-Address (PLA) into a b-bit

Encrypted Line-Address (ELA), and uses this ELA to access

the cache. As cache access latency is critical to performance,

we study potential designs for LLBC that can perform en-

cryption and decryption with low latency. For our design, we

use of a four-stage Feistel-Network [11] that can perform

encryption/decryption within 2 cycles, while consuming a

storage overhead of ten bytes (for the Encryption-Key). The

Encryption-Key of CEASE is initialized to a random value on

every reboot, so the mapping of PLA-to-ELA is different for

each machine, and even for the same machine this mapping

changes every time the machine is restarted. When a dirty line

is evicted from the cache, CEASE uses the LLBC to perform

decryption and convert the ELA of the evicted line to obtain

the PLA of the evicted line, and uses this PLA to perform

the writeback. Thus, the Encrypted Line-Address (ELA) is

visible only within the LLC, and the operations of rest of

the memory system (such as coherence requests, prefetch,

writeback) remain unchanged and continue to be performed

using the Physical Line-Address (PLA).

The PLA-to-ELA mapping of CEASE gets dictated by

the Encryption-Key, and for a given key, this mapping re-

mains constant. Given enough time, an adversary can still

launch a timing-based attack to determine which group of

lines map to the same set (we discuss such an attack in

Section III-E). CEASE can be made resilient against such

attacks by periodically changing the keys and performing

dynamic-remapping of the cache lines based on the new key,

as shown in Figure 1(c). At time t=t1, the LLBC has key Key-

t1, and uses a particular mapping. Over time, a new key Key-

t2 is used to remap the contents of the cache and when the

conversion finishes the key is updated to Key-t2. We call such

a variant of CEASE that performs dynamic-remapping as

CEASER (CEASE with Remapping). We perform a bin-and-

balls analysis and demonstrate that CEASER provides strong

security (tolerates 100+ years of attack) even if the remapping

of one cache line is performed per every 100 accesses to the

cache, thus limiting the remapping overhead to 1%.

Overall, this paper makes the following contributions:

1) To the best of our knowledge, this is the first paper to

advocate operating the on-chip caches on an encrypted

address space to mitigate cache attacks. The proposed

CEASE design randomizes mapping of memory lines to

cache locations without requiring any indirection tables.

2) As cache access latency is critical for performance, we

present a practical design for the Low-Latency Block-

Cipher. Our design uses a four-stage Feistel-Network,

which can perform encryption/decryption within 2 cy-

cles and incurs negligible storage overhead.

3) We propose CEASER (CEASE with Remapping),

whereby the keys are changed periodically and the con-

tents of the cache are gradually remapped from the old-

key to the new-key. We perform analysis to determine

the rate of remapping and show that remapping one line

every 100 accesses is sufficient for strong security.

Our evaluation with 134 workloads shows that CEASER

incurs a slowdown of only 1.1%. The newly added structures

of CEASER incur a storage overhead of less than 24 bytes.

CEASER provides strong security (tolerates 100+ years of

attack) and does not require any OS/software support.

LLBC

Key

C’

E’

B’ D’

A’

Line Address

LLBC

C’

E’

B’ D’

A’

Key Change
& Remap LLBC

Key−t1 (Gradual) Key−t2

B"

C" A"

E"

D"

Line Address Line Address

E
n

c
r

A
d

d
r

E
n

c
r

A
d

d
r

E
n

c
r

A
d

d
r

A E

B

C

D

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

68

Victim accesses V

B

B evicted

{A,B,V} form "Eviction Set"

Fig. 2. Example of ”Prime+Probe” cache attack. The attacker uses lines A and B to infer that the victim application accessed Set 0

II. BACKGROUND AND MOTIVATION

Modern processors share the last-level cache (LLC) and

are vulnerable to attacks whereby a spy can learn the ac-

cess pattern of a victim application by carefully orches-

trating cache evictions. Eviction-based cache attacks can be

broadly classified into two categories: Flush-based attacks (e.g.

Flush+Reload attack [12]) and Conflict-based attacks (e.g.

Prime+Probe attack and Evict+Time attack [13]). Flush-based

attacks target accesses to the memory locations that are shared

between the attacker and the victim. The attacker flushes a

shared line using the clflush instruction, waits, and then checks

the timing of a later access to that line – if the access incurs

shorter latency, then the attacker can infer that the victim

application has accessed the line. Flush-based attacks can be

mitigated by avoiding the sharing of security-critical data [14]

or by restricting the use of clflush to kernel mode [15]. In this

work, we focus on mitigating conflict-based attacks and use

Prime+Probe attack [13], [16] as a representative example.

A. Conflict-Based Cache Attacks: An Example

In conflict-based attacks, the attacker tries to determine

Examples of randomized mapping includes RPCache [4]

and NewCache [8]. These solutions randomize the location of

the line (set) in the cache and use a table to keep track of

the mapping. For example, the NewCache design [8], shown

in Figure 3(b), uses a Random Mapping Table (RMT) to

track the line-address to cache-address mapping. To avoid

attacks on the RMT, the applications must be classified into

two categories: protected and unprotected. Each protected

application gets a unique RMT-ID which is used to access

the RMT. Unprotected applications access the cache directly,

without any indirection. The problem with such Table-Based

Randomization schemes is that the size of the mapping tables

must be scaled linearly with the number of lines in the cache

and the number of concurrently running protected applications.

While such tables may be practical for a small cache (L1),

they become impractically large for LLC (e.g.for a 8MB

LLC, the mapping table would exceed 1MB). Furthermore,

the effectiveness of these schemes is heavily dependent on

the ability of the OS to mark applications as protected or

unprotected. Ideally, we want to avoid the storage of large

tables and have a solution that does not require OS support.

Logical

the cache sets have been accessed by a victim program. For

example, in the Prime+Probe attack [13], the attacker fills a

cache set with its own lines (Prime step), waits for the victim

Cache Random

Mapping
Table (RMT)

DM Cache

to perform its accesses (wait step), and then accesses the set

again to determine which cache sets have been accessed by

the victim (Probe step). Figure 2 shows an example of such a

Prime+Probe attack on a two-way cache. The attacker places

lines A and B in Set 0, and waits. The victim accesses a line

Protected

LineAddr T1

RMTID (Tx) T2
Tn

Unprotected
Application

LineAddr

(say line V) that maps to Set 0, which evicts line B. At a

later time, the attacker can access A and B, and measure the
(a) Preserve Lines (b) Randomized Mapping

time. Given the long-latency now required for B, the attacker

can infer that the victim accessed Set 0. Knowing the access

pattern of an application can leak secret information [3].

B. Prior Mitigation Approaches

Prior approaches for mitigating conflict-based attacks rely

on either preserving victim lines, or on randomized mapping

of victim lines to cache locations, as shown in Figure 3.

Examples of preservation based approach include PL-

Cache [4] (lock lines of sensitive application in the cache)

and Non-Monopolizable Cache [5] (reserve a few ways of

the shared cache for each core). Such approaches results in

inefficient use of cache space, as cache is reserved for the

application/cores regardless of the reuse characteristics of the

cache line. Ideally, we seek efficient utilization of cache space.

Fig. 3. Prior solutions (a) preservation-based (b) randomization-based

C. Goal and Insight

The goal of this paper is to develop a practical solution to

mitigate conflict-based attacks. For a solution to be useful, it

is important that it not only provides strong protection against

attacks but also has (1) Low performance overheads, (2) Low

storage overhead and simple implementation, (3) No reliance

on OS or software support, and (4) Localized implementation,

which avoids changes to multiple subsystems.

Our paper develops a practical solution based on random-

ized mapping of lines to cache locations. The key insight in

our work is to use encryption to perform randomization of the

cache lines efficiently and obviate the need for any indirection

table and OS support. We describe our solution next.

Attacker uses timing

difference to learn

Victim accessed Set 0

Attacker accesses A&B

miss for B

B

Attacker places A&B

Set 0

Set 1

P

R
O

T
E
C
T

A B

A V

A

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

69

III. OPERATING CACHE ON ENCRYPTED ADDRESS SPACE

Randomized mapping provides protection against conflict-

based attacks by making it harder for the attacker to form

an eviction set. Our solution leverages encryption to enable

randomized mapping for the LLC in an efficient manner. Given

the avalanche effect of encryption, lines that map to one set

of a traditional cache would get scattered throughout the sets

of the cache, and this mapping would be controlled by an

encryption key. Our solution, CEASE (Cache Operated on

Encrypted Address Space) is based on these principles.

Access Coherence DRAM Access Writeback

CEASE

Fig. 4. Overview of CEASE. CEASE uses Low-Latency Block-Cipher
(LLBC) to convert between PLA and ELA. The ELA is visible to (and within)
the LLC, and all operations outside the cache continue to use PLA.

A. Overview of the CEASE

Figure 4 provides an overview of CEASE. Similar to a

conventional cache, CEASE is accessed using the Physical

Line-Address (PLA). CEASE uses a Low-Latency Block-

Cipher (LLBC) to convert the b-bit PLA into a b-bit Encrypted

Line-Address (ELA) uses this ELA to access the cache. With

CEASE, the cache organization and hit/miss detection all

remains unchanged – just that instead of receiving an access

for a physical line-address A (which may get mapped to some

Set X), the cache receives an access for an encrypted line

address B (which may get mapped to a different Set Y).

Internally, the tag-store entry of the cache continues to have the

usual metadata such as valid bit, dirty bit, replacement state,

coherence bits, and the tag. The tag-store and the data-store

of the cache remain unchanged.

If the accessed PLA is present in the cache, the cache

indicates a hit and provides the data. On a miss, the cache

may evict a dirty line, and this line must be written back to

the memory. As the tag information in the cache is based on

encrypted address, we must first convert it into the original

physical address. Fortunately, the same LLBC circuit (with

minor changes) can be used to perform decryption and convert

the ELA to PLA. As the evicted line now has the original

physical address, the line can be written to back to memory

without the memory needing to know about the ELA.

The encrypted address (ELA) is visible only to (and is

present within) the LLC. The rest of the system remains

oblivious to the presence of the ELA and continue to operate in

a traditional manner using the PLA. Thus, coherence requests,

store requests, prefetch requests, all continue to access the

cache with only the PLA and without being aware of the

ELA. CEASE internally converts the PLA to ELA to access

the cache and re-converts ELA to PLA while interacting with

the external systems (such as on writebacks to memory).

B. Considerations for the Block-Cipher

Block ciphers provide a one-to-one mapping from a B-

bit plaintext to B-bit ciphertext. The number of bits that we

want to encrypt (the line address) is usually quite small.

For example, we consider a system with a 46-bit physical

address space (capable of addressing up-to 64TB of memory),

so the line-address is only 40 bits. We need a block cipher

that efficiently converts a 40-bit PLA into a 40-bit ELA. The

commonly used encryption algorithms, such as AES, operate

at 128-bit to 256-bit granularity, and incur a latency of tens

of cycles. We want a block-cipher that operates at low-width,

is secure, and does not incur significant latency overheads.

We observe that our usage of block cipher is different in a

fundamental way, in that the adversary has no direct visibility

to the ciphertext, so the adversary cannot memorize plaintext-

ciphertext pairs, which is typically the biggest weakness of

small-width block ciphers. For example, small-width block

cipher (such as DES, which operates on 64-bits) are usually

considered insecure because an adversary can either do a brute

force search for the key or memorize plaintext-ciphertext pairs.

Therefore, most of the secure block-ciphers (such as AES)

have now moved to 128-bit or 256-bit blocks. Fortunately,

in our case, the encrypted line-address is not visible to the

adversary, so memorization-based attacks are not a concern,

and we can use small-width block ciphers. We describe the

design of our low-latency block-cipher (LLBC) next.

C. Low-Latency Block-Cipher Using Feistel-Network

One popular method to build block ciphers is the Feistel-

Network [11]. Feistel-Networks are simple to implement, incur

low-latency, and are widely used in encryption algorithms,

such as the Data Encryption Standard (DES) [11] and Blow-

Fish [17]. Feistel-Network has been studied extensively and

theoretical work has shown that for well-chosen round func-

tions, “having 3 stages is sufficient to make the block cipher

a pseudo-random permutation, while 4 stages are sufficient to

make it a strong pseudo-random permutation” [18]. Therefore,

in our solution, we use a four-stage Feistel-Network.

Figure 5 shows the logic for the four-stage Feistel-Network

operating on a 40-bit line-address. Each stage splits the 40-

bit input into two parts (L and R) and has an output which

is split into two as well (L’ and R’). R’ is equal to L. L’ is

computed using an XOR operation on R and the output of a

Round Function (F) which accepts L and a randomly chosen

key (K). Each stage requires a 20-bit key, which means the

network requires one 80-bit key (one quarter for each stage).

Install Prefetch (On LLC miss) Dirty Evicts

Physical
Line Address Hit/Miss Data

Physical
Line Address

[Unchanged]

B
Key Key

B B

LLBC B

PLA (encrypt) ELA
LLBC

ELA (decrypt) PLA

(Evicted Line)

LLC

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

70

·

·

×

PLA (40−bit) ELA (40−bit) Function F

Fig. 5. A Low-Latency Block-Cipher (LLBC) implementation using four-stage Feistel-Network (the F function is based on a Substitution-Permutation Network)

The round function (F) of the Feistel-Network need not be

invertible. For the round function (F), we use a substitution-

permutation network (SPN) that can provide obfuscation with

low-latency and zero storage overheads. We assume that the

SPN boxes are configured differently for each stage and they

get fixed at design time. The S-Box in our design has 40-bit

input and 20-bit output block that is configured such that each

bit of the S-Box is computed as XOR of 20 randomly selected

inputs. Figure 6(a) and (b) show the logical representation of

the S-Box (for 4-bit input and 2-bit output) and the storage-

free physical implementation. The P-Box routes one-bit of the

input to one (randomly selected) bit of the output, as shown

in Figure 6 (c) and (d), for 4-bit input and 4-bit output. The P-

Box does not incur any latency due to gate delays.

E. Attack Model for the Static Design

CEASE uses an encrypted address to scramble the memory

to cache mapping, and this mapping depends on the encryption

key. The key is initialized to a random value using a hardware-

based PRNG (pseudo-random number generator) when the

machine is powered up. So, even if the adversary learns

the mapping of one machine, the adversary cannot use it to

attack another machine (in fact, mapping learned for a given

machine is no longer valid once that machine is restarted).

Unfortunately, for a given uptime, the key remains constant,

and hence the memory to cache-set mapping is constant. An

adversary can use a timing-based attack to learn the mapping.

x3 x2 x1 x0

y0

y1

(a) Logical S−Box

x3 x2 x1 x0

y3

y2

y1

y0

x3 x2 x1 x0

y0

y1

(b) Physical S−Box

(c) Logical P−Box

x3 x2 x1 x0

y3 y2 y1 y0

(d) Physical P−Box

Fig. 7. An attack forms ”Eviction Set” for one cache set (a) LLC with 4-sets
and 2-ways, (b) Equivalent bin-and-balls model used in our analysis.

Even if the attacker does not know which line maps to which

cache set, the attacker can form a group of L random lines and

use a timing attack to check if any line of the L lines miss

in the cache. A cache with S sets and W ways has a total of

Fig. 6. Components of Substitution-Permutation Network. The (a) logical
view and (b) physical implementation of an S-Box. The (c) logical view and
(d) physical implementation of a P-Box.

D. Storage and Latency Analysis of Proposed LLBC

Computing each bit of the SPN incurs a delay of 5 two-

input XOR gates, which means that each stage of the Feistel-

Network has a delay of 6 XOR gates. Thus, for four-stages,

the critical path delay will be 24 XOR gates, which can be

computed within two clock cycles of even an aggressively

pipelined processor (typically the clock cycle of modern

processors is designed to perform 15-20 gate operations). The

total storage for the proposed LLBC is 80-bits (for the keys).

Note that the same hardware can be used to perform both

encryption and decryption, with only minor changes to the

sequence in which the operations are performed. So, we do

not need two separate LLBC for encryption and decryption (it

is shown separately in Figure 4 for simplicity for explanation).

N = S W lines. However, L can be expected to be lower than

N, due to the non-uniformity of lines to set mapping inherent

in a random assignment (as shown in Figure 7(a), where five

random lines are enough to cause an eviction in Set 2).

We analyze the expected value of L using bins and balls

analysis, as shown in Figure 7(b). Balls are randomly thrown

into the bins until one bin overflows. Our baseline 8MB 16-

way cache has 8192 sets, and we found that only 42% of the

lines need to be in the attack to cause one eviction. Thus, the

attacker can form a group of L = 0.42 N lines and check for

an eviction. However, the attacker still does not know which

of the L lines belong to the conflicting set. The attacker can

learn this by sequentially removing one line from the L lines

and checking if the remaining accesses are eviction-free, if

so, the removed line maps to the conflicting set. To learn the

eviction set, the attacker needs approximately L
2
 accesses [10].

Our baseline 8MB LLC has 128K lines (L=0.42 128K), so

it takes an attacker only 22 seconds to learn the eviction set.

A
20

K
20

S−BOX
(40x20)

P−BOX
(20x20)

20

Y

STAGE 1 STAGE 2 STAGE 3 STAGE 4
20 20

Key1

20
F

Key2
F

Key3
F

Key4
F

20

XOR

R’

20

L’

R

L

Rand

Ball }
Bins

Set 0

Set 1

Set 2

Set 3

LLC

B
in

 C
a

p
a

c
it
y
=

2

1 0 1 1

0 1 1 0

 1

 1

1

 1

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

71

CurrKey=K0 Remap? CurrKey=K1 Remap?

LLBC LLBC

LLC LLC
LLBC LLBC

NextKey=K1 NextKey=K2 time

t0 EpochID=0 t1
CurrKey=K1
NextKey=K2

EpochID=1 t2
CurrKey=K2
NextKey=K3

SPtr
0

1

2

3

0

SPtr
1

2

3

Moved A,B

X0 B1

Y0 A1

Z 0

0

1
SPtr

2

3

Moved X

0

1

2
SPtr

3

Moved Y

SPtr

Moved Z, Epoch++

0

1

2

3

ACtr=0
EpochID=0

(a)

ACtr=200
EpochID=0

(b)

ACtr=400
EpochID=0

(c)

ACtr=600
EpochID=0

(d)

ACtr=800
EpochID=1

(e)

Fig. 8. Example of CEASER with gradual remapping for a cache with four sets (0-3). The subscript with the line denotes the EpochID with which the line
was remapped. After every 200 access to the cache (tracked by the access counter, ACtr), all the lines of the set pointed by SPtr gets remapped based on the
key of the next Epoch. The shaded area of the cache represents parts of the cache that have undergone remapping based on the key of the next epoch.

IV. CEASER: DYNAMIC REMAPPING AND KEY CHANGE

The weakness of CEASE is that it forms evictions sets at

boot time and they remain static throughout, making it possible

for an adversary to learn the eviction sets. If we change the

lines that form the eviction sets periodically, it will make it

much harder for an adversary to learn the eviction sets. Based

on this insight, we propose CEASE with Dynamic-Remapping

(CEASER), which accomplishes this by periodically changing

the key and remapping the lines based on the new key.

(a)

(b)

Fig. 9. Dynamic-Remapping in CEASER (a) Bulk-Remap (b) Gradual-Remap

A. Overview of Dynamic-Remapping in CEASER

CEASER divides the time into epochs and each epoch

has its own key. In each epoch, CEASER uses the key of

the epoch to perform encryption and decryption. Figure 9

describes two designs for CEASER: (a) bulk-remapping and

(b) gradual-remapping. In the bulk-remapping design, at the

end of the epoch, the keys are changed and all the cache

lines are remapped using the new-key (to perform remapping,

the line is read, the encrypted line address is converted into

physical address with the old key, this physical address is re-

encrypted with the new key and installed in the cache, and the

old location is invalidated). This design is impractical because

it requires simultaneous remapping of all the lines.

Key=K0 Key=K1

LLBC LLC LLBC LLC

time

t0 EpochID=0 t1
Key=K1

Remap All lines

EpochID=1 t2
Key=K2

Remap All lines

A0 B0

X0

Y0

Z 0

X1

 B1

Y0 A1

Z 0

X1

 B1

 A1

Z 0 Y1

X1

Z 1 B1

 A1

 Y1

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

72

·

·

The second design gradually remaps parts of the cache

during the entire period using the key (NextKey) correspond-

ing to the next epoch. By the time the epoch ends, all

the lines in the cache get remapped using the NextKey, so no

additional remapping is required at the end of the epoch.

At the end of the epoch, the current key (CurrKey) is set to

the NextKey and the NextKey is initialized to a random

value. On each access, the incoming PLA is translated into an

ELA using both the CurrKey and NextKey, and the

appropriate one is chosen depending on whether that line has

already been remapped using the NextKey. As the gradual-

remap based design spreads the remapping throughout the

epoch, it is a more practical design. We use gradual-remap as

the default design for implementation of CEASER.

B. Practical CEASER via Gradual-Remapping

The rate of remapping of the CEASER is regulated by

a parameter Accesses-Per-Line-Remap (APLR). For practical

reasons, CEASER performs remapping of all lines in the

set at any given time. So, if we set APLR=K, CEASER would

remap one set containing W ways every W K accesses. The

entire cache containing N lines will get remapped after K N

accesses, which is also the epoch period.

To perform remapping, CEASER is equipped with two

registers: Set-Relocation Pointer (SPtr) and Access-Counter

(ACtr). The SPtr keeps track of which set in the cache that

should be remapped next. ACtr is incremented on each

access to the cache and determines when to trigger the next

remap.

Figure 8 shows an example of gradual mapping for a cache

containing 4 sets (0-3). For simplicity, we assume five lines

are resident in the cache (A, B, X, Y, Z). The subscript with

the line denotes the encrypted address of the line based on

the EpochID (so, A0 is the encrypted address of A with the

key of EpochID=0, and A1 is the encrypted address of A

based on the key of EpochID=1). The cache begins with

SPtr=0, ACtr=0, and EpochID=0, as shown in Figure 8(a). We

assume CEASER is set to remap one line every 100 accesses,

so one set of the two-way cache will get remapped every

200 accesses.

After 200 accesses to the cache (ACtr=200), the lines resi-

dent in Set 0 (A0, and B0) get remapped. CEASER performs

decryption of the line address (A0 to A) using the CurrKey,

re-encrypts the line with the key (NextKey) of the next epoch

(A to A1), and installs this line (A1) in the cache using

the

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

73

CurrKey=K0
Determine

Set Index (S)

LLBC
X0

S >= SPtr?

PLA=X

NextKey=K1 Yes

LLBC
X1 No

ELA(X)

EID

LLC

regular replacement policy. A1 goes to Set 2 and B1 goes to

Set 1. The SPtr is incremented as shown in Figure 8(b).

After another 200 accesses (ACtr=400), Set 1 undergoes

relocation. Note that we need to relocate only X0 and not B1,

as B1 corresponds to the next epoch. After remapping, X1 gets

relocated to Set 0, as shown in Figure 8(c).

After another 200 accesses (ACtr=600), Set 2 undergoes

relocation and line Y0 gets remapped, as shown in Figure 8(d).

After another 200 accesses (ACtr=800), Set 3 undergoes

relocation and line Z0 gets relocated to Set 1 after getting

remapped with NextKey. Note that now the entire cache has

undergone remapping and contains lines that belong only to

the next epoch. When this happens, the EpochID is incre-

mented, Sptr and ACtr are reset, CurrKey is set to NextKey,

NextKey is set to a random value, and the process repeats.

With gradual mapping, lines from two different epoch

(current and next) can co-reside in the cache at any given

time. Therefore, the encrypted line address must be identified

with the EpochID (EID) with which the line was remapped.

Otherwise, two lines in a set can end up having the same

encrypted address, one for the current epoch and one for

the next epoch. For example, in Figure 8(b), if A1 equals

Y0, and Y0 has not been remapped yet, we will have two

lines with an identical encrypted address. However, if we also

stored EID with each cache line, we can identify precisely

which encrypted address belongs to which line. As only two

EpochIDs can be valid at any given time (current or next), we

need only one-bit (EID) to identify the EpochID of the line.

We use a default value of APLR=100 in our design, which

means the remapping overhead is limited 1% (on average,

one line gets remapped per 100 accesses). Our analysis in

Section V will show that this rate of remapping is sufficient

to tolerate 100+ years of continuous attack.

C. Cache Access with CEASER

On an access to the LLC, we do not know if the line has

been already remapped during this epoch or not. However, we

can determine this by first performing the encryption using

the CurrKey and checking if the set index of the line maps

to a set that is yet to undergo remapping (set index is greater

than or equal to SPtr). If so, we should use the mapping using

the Currkey, otherwise use the mapping using the NextKey,

as shown in Figure 10. Once the encrypted address and the

corresponding EpochID (current or next) is available, the cache

access/install can proceed in the normal manner – with the tag

match on the encrypted line address (plus the EID).

Fig. 10. Translating PLA to ELA using CEASER. Encryption is performed

with both CurrKey and NextKey and the correct ELA to access the LLC.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

74

D. Analyzing CEASER for a Banked Shared-Cache

In our studies, we assume that there is no timing

difference in access to different parts of the LLC. Some

processor designs use a banked LLC, where the banks are

connected via a ring, and access to different banks have

different latencies. An adversary can exploit this timing

differences to determine the line to bank mapping and focus

the attack on one bank [10]. Our bank-agnostic

implementation of CEASER would de- termine the line-to-

bank mapping based on the encryption key. However, if the

designer wants the flexibility to regulate the line-to-bank

mapping (using a proprietary function), then CEASER can

still be implemented at a per-bank granularity, with each

bank having its own remapping circuit. In both the bank-

agnostic and bank-aware implementations of CEASER, the

effective size of the cache under attack would get reduced to

one bank. For example, banking would degenerate our 8MB

LLC into a 1MB LLC for the attacker. Fortunately, per

the analysis shown in Section V (Table I), for a 1MB 16-

way cache, remapping one line every 100 accesses is still

sufficient

to provide strong security even for the banked design.

V. SECURITY ANALYSIS OF CEASER

For CEASER, the rate of remapping affects the time that

the attacker has to learn about the mapping before the

mapping changes. For security, we want the remapping to

happen frequently, and to reduce the overheads of relocation,

we want the remapping to happen infrequently. The rate of

remapping is controlled by APLR (Accesses-Per-Line-

Remap), which we denote as K. We use a default value of

K=100 in our design, which means the remapping overhead

is limited to 1% (one line gets remapped per 100 accesses).

We analyze if this rate of remapping is sufficient for strong

security.

A. Attack Model and Assumptions

We make the following (severely conservative) assumptions:

1) Simply knowing the eviction set of one of the cache-set

is sufficient to declare the attack successful (even

though this may not be the same set shared by the

victim).

2) The lines in the attack do not get remapped during the

entire epoch (the gradual move of CEASER would

cause some attack to get relocated but to simplify the

analysis we make the assumption of bulk remapping).

3) No other application accesses the cache during the

epoch period (otherwise, those accesses can cause the

epoch to end earlier and the attacker will be able to do

only a reduced fraction of total accesses in the

epoch).

4) The adversary has enough time to not only form

an eviction set but also to infer the information of the

victim (if most of the epoch goes in forming an eviction

set, it would leave very little time to attack the

victim).

We also assume an idealized encryption algorithm which

can randomly map a given line to any arbitrary location in

memory with an equal probability (in Appendix-A, we perform

an Avalanche Test on our proposed LLBC to demonstrate that

even a 1-bit difference in the physical address space causes a

large number of bits to change in the encrypted address space).

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

75

·

·

·

B. Analytical Model for Attack

Let there be N lines in the cache, organized as S sets and W

ways. Let CEASER be set to remap one line every K accesses

to the cache, so the epoch period will be K N accesses. To

attack the cache, the adversary can form a group of L random

lines, and test if any of these lines miss in the cache. Using

the bins-and-balls analysis, we can estimate the fraction of

the total cache lines (F) that must be attacked (L = F N) to

encounter one of the L lines that misses (similar to Figure 7).

Once the attacker forms a group of lines, at least one of which

missed in the cache, the attacker can remove one line and test

if the miss still happens. If the miss did not happen, then the

removed line is part of the eviction set, otherwise, it is not.

This process is repeated for all L lines to learn the eviction

set of one of the (unknown) set of the cache. At each step, the

timing test is done at least R times to get a reliable estimate.

To launch this attack the adversary would need R L
2
 accesses.

The attack would not succeed if all the lines in the attack are

guaranteed to get remapped before the adversary can perform

R· L2
 accesses. So, we can bound the epoch period as follows:

E poch Period < R · L2
 (1)

The number of lines (L) in the attack represents a fraction

(F) of the total cache lines. So,

K · N < R · (F · N)2
 (2)

Therefore,

K < R · F2
 · N (3)

To estimate F, we again use the bins-and-balls analysis. We

leverage the observation the number of balls in a given bin

follow a Poisson process, when the balls are thrown at random.

In particular, if the average number of balls per bin is λ , then

the probability that a given bin has B balls is given by:

e−λ · λ B

TABLE I
TIME FOR ATTACK TO SUCCEED WITH CEASER.

Accesses-Per-Line-Remap 8MB LLC 1 MB Bank of LLC

100 (default) > 100 years > 100 years

200 > 100 years 21 years

500 > 100 years 16 days

1000 > 100 years 5 hours

2000 37 years 5.2 minutes

No-Remap (CEASE) 22 seconds 0.4 seconds

Thus, remapping is crucial for the security of CEASER.

Without remapping, the attack succeeds in less than one

minute (and the exposed lines continue to remain vulnerable).

With remapping, the attacker needs 100+ years to expose one

set (and that too only for a few microseconds). Furthermore,

CEASER is even more effective for larger caches because the

number of accesses required to learn the eviction set increases

approximately in proportion to N
2
 [10] (N is the number of

lines in the cache), whereas the time to remap the entire cache

increases only linearly with N.

VI. EXPERIMENTAL METHODOLOGY

A. Configuration

We use a Pin-based x86 simulator with a detailed memory

model. Table II shows the configuration used in our study. The

L3 cache is 8MB shared between all the cores and incurs a

latency of 24 cycles. All caches use a linesize of 64 bytes. For

CEASER, we encryption latency of 2 cycles and APLR=100.

TABLE II
BASELINE CONFIGURATION

P(bin has B balls) =
B!

(4)

We are interested in a set having more lines mapped to it

than the associativity of the cache (for our 16-way LLC, we

are interested in the set having 17 or more lines). We can use

Equation 4 to determine the average number of ways that must

be full for one of the set to overflow (with a given probability),

and use this information to determine the fraction F.

C. Time for Successful Attack

The resilience of CEASER to attacks is dictated by the

rate of remapping – the quicker the remap, the less time

the adversary has to learn the mapping. Table I shows the

time for a successful attack, as the rate of remapping of

CEASER is changed from 100 (default) to 2000. We perform

this analysis for both the baseline 8MB cache and a 1MB bank

(attacker focuses on 1 bank, CEASER implemented per bank).

Furthermore, we conservatively assume R=2 (only two trials

are needed to get an accurate estimate of the timing, instead

of the tens/hundreds that are typically required).

Processor

Core parameters
L1 and L2 cache

8-cores, 3.2GHz
32KB, 256KB 8-way (private)

Last Level Cache

L3 (shared) 8MB, 16-way, 24 cycles

DRAM Memory-System

Bus frequency
Channels
tCAS-tRCD-tRP-tRAS

800 MHz (DDR 1.6 GHz)
2 (8-Banks each, 2KB row buffers)
9-9-9-36

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

76

B. Workloads

We use a diverse set of workloads for our study, including

all the 29 workloads from the SPEC2006 benchmarks

suite and 5 workloads from the GAP benchmark suite

[19]. For each benchmark, we use a representative slice [20]

of 1 billion instructions. These 34 benchmarks are run in rate-

mode where each core runs a copy of the benchmarks.

Additionally, we use 100 mixes formed randomly from these

34 benchmarks.

We perform timing simulation until all benchmarks in the

workload finish executing a minimum of 1 billion

instructions. For measuring aggregate performance, we use

the weighted speedup metric. We report normalized

performance as the ratio of weighted speedup of the

proposed design to the baseline.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

77

101

100

99

98

97

96

95

CEASE (NoRemap) CEASER 102.6

101

100

99

98

97

96

95

100 Mixed Workloads (Sorted from Lowest to Highest)

Fig. 11. Normalized performance of CEASE (no remapping) and CEASER for the rate-mode workloads (top) and mixed-workloads (bottom). For the 34 rate-
mode workloads, CEASE and CEASER incur an average performance loss of 0.32% and 0.74% respectively. Across all 134 workloads the average
performance loss is 0.68% and 1.1% respectively.

VII. RESULTS AND ANALYSIS

A. Impact on Performance

There are three sources of performance impact of CEASER.

First, potential change in cache miss-rate because of the

change in the group of lines that get mapped to a given set of

the cache, which alters the conflict misses (this can sometimes

improve hit rate and sometimes degrade hit rate, although the

B. Sensitivity to Encryption Latency

CEASER utilizes low-latency block-cipher (LLBC) to per-

form encryption and decryption. The algorithm is chosen to

minimize the latency of such translations, while exploiting

the fact that the adversary does not have a direct access

to the encrypted value. We use a latency of 2 cycles for

encryption/decryption, based on the estimated logic delays.

overall impact is negligible). Second, the increase in access 0 cycle 1 cycle 2 cycles 3 cycles 4 cycles

latency of the cache due to the latency of the encryption

process (translating the physical line-address into an encrypted

line-address). And, third, extra misses incurred due to the

relocation of lines as such relocated lines can evict a useful line

from the set where the line got remapped to (albeit by design,

such relocations are done at a rate of 1 every 100 accesses, so

the impact on miss rate due to relocation is bounded to 1%).

100

99

98

97

96

95

Gmean-Rate(34) Gmean-Mix(100) Gmean-All(134)

Figure 11 shows the performance of CEASE (design with-

out dynamic remapping) and CEASER (with dynamic remap-

ping) for 34-rate workloads and 100 mixed workloads. Note

that the performance is normalized to the baseline (so higher is

better, and 100% denotes no degradation). For the rate-mode

workloads, CEASE and CEASER cause an average perfor-

mance loss of 0.32% and 0.74%, respectively. Sphinx3 sees a

2% improvement because of the reduction in conflict misses.

Overall, across all 134 workloads, CEASE and CEASER incur

a slowdown of only 0.68% and 1.1% respectively.

CEASE (NoRemap) CEASER

N
o

rm
.

P
er

fo
rm

a
n

ce
 (

%
)

N
o

rm
.

P
er

fo
rm

a
n

ce
 (

%
)

N
o

rm
.

P
er

fo
rm

a
n

ce
 (

%
)

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

78

Fig. 12. Impact of the latency of encryption on the performance of CEASER.

Figure 12 shows the performance of CEASER as the

latency of encryption is changed from 0 cycles to 4 cycles.

With a zero-cycle latency overhead, we could reduce the

performance loss of CEASER to 0.5%, whereas with a 4-

cycle latency, the performance loss would be 1.75%. Thus,

the performance overhead can still be reduced further using

lower latency implementations of block ciphers.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

79

8MB 16MB 32MB 64MB

C. Impact of CEASER on LLC MPKI and Miss-Rate

CEASER affects cache misses due to randomization (which

can affect conflict misses, either positively or negatively) and

remapping (the remapped line may evict a useful line from

the remapped set). We analyze the impact of CEASER on the

miss-rate and MPKI (misses per 1000 instructions) of the LLC.

Table III shows the miss rate and MPKI of the baseline 8MB

LLC and with CEASER, for the 34 rate-mode workloads.

TABLE III

IMPACT OF CEASER ON THE MPKI AND MISS-RATE OF LLC (8MB).

D. Sensitivity to Remapping Interval

The rate of remapping of CEASER is regulated by the

parameter APLR (Accesses-Per-Line-Remap). In our default

implementation of CEASER, we use an APLR=100, which

means one cache line gets remapped every 100 accesses to

the cache (for simplicity, we remap one set of a W-way cache

every 100*W accesses). We showed that this rate is sufficient

to provide strong security and that the performance overhead

with this rate of remapping is quite small (almost 1%).

100

99

98

97

96

95
Gmean-Rate(34) Gmean-Mix(100) Gmean-All(134)

Fig. 13. Impact of the remapping frequency on slowdown of CEASER.
Increasing remap frequency by 4x increases slowdown from 1.1% to 1.2%

Figure 13 shows the performance of CEASER normalized

to the baseline, for an APLR of 25, 50, and 100 accesses. The

impact of reducing the APLR is quite small, as performance

loss of CEASER increases from 1.1% to 1.2% if the APLR is

reduced from 100 to 25. So, a designer may choose to reduce

APLR somewhat and still not incur significant slowdown.

E. Sensitivity to LLC Capacity

Our default configuration contains an 8MB shared LLC. In

this section, we study the performance sensitivity of CEASER

for different sizes of LLC. Figure 14 shows the normalized

performance of CEASER when LLC is varied from 8MB to

64MB (performance is normalized against the baseline with

an equal-capacity LLC). Across all LLC sizes, the average

slowdown of CEASER is between 1% and 1.5%. Thus,

CEASER incurs negligible slowdown even for large LLCs.

100

99

98

97

96

95
Gmean-Rate(34) Gmean-Mix(100) Gmean-All(134)

Some low-MPKI workloads (such as astar and gobmk) see a

noticeable increase in MPKI, however, given these workloads

are low-MPKI, the impact on performance remains negligible.

For sphinx3, we notice that randomization causes the MPKI to

get reduced from 11.6 in the baseline to 11.1 with CEASER,

and this 5% reduction in MPKI causes improved performance

of CEASER compared to the baseline. Overall, CEASER has

only a negligible impact on the missrate of the LLC, increasing

it from 70.5% to 71.7%, and also a negligible impact on MPKI,

increasing the average MPKI from 19.5 to 19.6.

Fig. 14. Performance Impact of CEASER for systems with larger LLC.

F. Analyzing Other Overheads: Logic, Storage, and Power

Logic: CEASER requires two LLBC circuits and selection

logic to select between these two circuits. Each LLBC with

our proposed design requires approximately 1680 two-input

xor gates, and the selection logic requires approximately 100

two-input gates. So, the total logic overheads of CEASER is

less than 3500 two-input gates, which is quite small (similar

to computing SECDED code for a 64-byte line).

APLR=25 APLR=50 APLR=100

N
o

r
m

.
P

e
r
fo

r
m

a
n

c
e
 (

%
)

N
o
r
m

.
P

e
r
fo

r
m

a
n

c
e
 (

%
)

Workload
Name

MPKI
Baseline

MPKI
CEASER

MissRate(%)
Baseline

MissRate
CEASER

astar 0.5 0.7 21.5 27.8

bwaves 18.7 18.7 100 100

bzip2 3.5 3.6 52.6 56.8

cactusADM 5.3 5.2 97.7 96.6

calculix 0.0 0.0 68.5 68.7

dealII 2.5 2.4 65.7 66.4

gamess 0.0 0.0 3.4 3.8

gcc 16.3 16.7 80.9 82.8

GemsFDTD 9.8 9.8 92.8 93.2

gobmk 0.4 0.4 28.2 33.3

gromacs 0.6 0.6 35.6 37.5

h264ref 0.5 0.6 35 42.6

hmmer 0.5 0.8 17.5 28

lbm 31.9 31.9 99.9 99.8

leslie3d 7.6 7.6 91.5 92.1

libquantum 25.4 25.4 100 100

mcf 67.6 68.8 72.4 73.8

milc 25.8 25.6 99.8 99

namd 0.1 0.1 72 73

omnetpp 20.9 21.1 87.7 88.2

perlbench 0.8 0.8 46.7 48

povray 0.0 0.0 2.2 2.2

sjeng 0.4 0.4 87.3 87.5

soplex 26.9 26.9 97.7 97.7

sphinx3 11.6 11.1 89.4 85.5

tonto 0.1 0.1 4.9 7

wrf 6.6 6.5 97 96.8

xalancbmk 2.2 2.2 68.9 69.9

zeusmp 4.8 4.8 96.4 96.3

BC 84.5 84.5 98 98.1

BreadthFS 37.2 37.3 96.7 96.8

ConnComp 85.7 85.9 95.7 96

PageRank 46.0 46.2 94.6 94.9

SSSPath 118.8 119.0 98 98.1

Average 19.5 19.6 70.5 71.7

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

80

Storage for New Structures: The storage overhead of the

LLBC is quite small (80 bits for the keys). CEASER needs

two such keys. CEASER also requires a 13-bit SPtr pointer

(for an 8MB 16-way cache), a 13-bit Access Counter (ACtr)

and a 1-bit EpochID. The total storage overhead for the newly

added structures of CEASER is less than 24 bytes.

Per-Line Storage: CEASER also requires that each cache line

be appended with a 1-bit EID to denote the EpochID whose

key was used for encrypting the line address.

Energy and Power Overheads: The power overheads of

CEASER comes from the encryption circuit, the remapping

of lines (one line per 100 access), and the extra misses (0.4%

higher memory traffic). With CEASER, the overall system

power increases by approximately 0.2% and the overall system

energy by less than 1% (mainly due to the slight slowdown).

VIII. RELATED WORK

Our paper focuses on developing efficient mitigation solu-

tions for conflict-based attacks. There are several prior works

that have investigated this problem. In this section, we discuss

the prior work, comparing and contrasting where appropriate.

A. Preservation-Based Mitigation Techniques

Preservation-based techniques rely on preserving the data of

the victim application, by making it harder for the attacker to

evict the data of the victim application. This is typically done

by allocating dedicated cache space to protected (security-

sensitive applications). For example, PLCache [4] uses cache

line locking to lock the lines of the protected applications.

CATalyst [21] uses the Cache Allocation Technology (CAT)

to reserve a given number of ways for the security-sensitive

applications. And, StealthMem [22] uses page-coloring to

ensure that sensitive data gets mapped to cache sets that do

not receive contention from other applications. The efficacy

of all these schemes rely on the ability of the OS to carefully

classify applications into protected and unprotected groups,

and use the cache preservation only for the protected groups.

Ideally, we want to mitigate attacks without relying on any

OS or software support. Furthermore, these solutions do not

use cache space efficiently, as cache resources are used for the

protected applications, regardless of the reuse.

Non-Monopolizable (NoMo) Cache [5] allocates a fixed

number of ways to each core, and performs dynamic parti-

tioning only on the remaining ways. While NoMo can protect

victim lines from getting evicted, NoMo becomes impractical

for the LLC, given that the LLC is shared by a large number

of cores. For example, our baseline 16-way LLC is shared by

8-cores, and reserving even 1-way for each of the core would

make half of the LLC unavailable for dynamic partitioning,

leading to inefficient use of the LLC resources. Nonetheless,

an SMT-based system can still use NoMo for the L1 and L2

cache (private) and CEASER for the LLC.

Recent studies [15], [23] have exploited the inclusion prop-

erty of LLC to provide preservation. For example, Relaxed

Inclusion Cache (RIC) [23] classifies the working set into

private, read-only, and critical pages and relaxes inclusion for

a subset of the working set. RIC requires OS support for classi-

fication, changing the way how coherence requests are handled

(snoop filters), and requires cache flush on thread migration.

Ideally, we want to avoid these changes and the need for OS

support. SHARP [15] avoids selecting a replacement victim

in the LLC that is present in the L1 or L2, and when this

happens it tries to select another victim. After a certain number

of such trails, if a victim is not found then a random victim is

chosen. SHARP counts such episode of random victim with

an AlarmCounter, and informs the OS of a possible attack if

the AlarmCounter exceeds a certain threshold. Thus, SHARP

requires (a) changes to the on-chip network to send query

between the LLC and the L1/L2 for replacement victim, and

(b) OS support to handle the AlarmCounter (and a policy for

false positives). Ideally, we want to mitigate attacks without

requiring any OS support.

B. Randomization-Based Mitigation Techniques

Randomization-based techniques rely on randomized map-

ping of the memory line to the cache set, thereby making

it harder for the adversary to form an eviction set. Prior

proposals [4], [8] use mapping tables to track the location

of the line (or the set) in the cache. For example, RPCache

[4] moves all lines belonging to a protected application

from one set to another randomly selected set and uses a

Permutation Table (PT) to remember the set-to-set mapping.

NewCache [8] performs randomized mapping on a per-line

granularity, whereby a line is mapped to a set in the direct-

mapped cache and a Random Mapping Table (RMT) is used

to track the line-address to cache-location mapping.

The disadvantage of such table-based randomization

schemes is that the mapping tables must scale linearly with the

number of lines in the cache and the number of concurrently

running protected applications. While such tables can be

implemented efficiently for small L1 caches [8], they become

impractically large for a multi-megabyte LLCs. Furthermore,

the effectiveness of these schemes relies on the OS-based

classification of applications into protected and unprotected

(otherwise, the mapping table can be attacked). Table IV shows

the storage overheads of table-based randomization (TBR),

with OS support (shared mapping tables) and without OS

support (private per-core mapping tables), and CEASER.

TABLE IV
STORAGE OVERHEAD OF ADDITIONAL STRUCTURES (FOR 8MB LLC).

Scheme Storage Overheads

Table-Based (with OS support) 1.25 megabytes

Table-Based (without OS support) 8.5 megabytes

CEASER (OS support not required) 24 bytes

TBR requires mapping tables exceeding 1MB (with OS

support) or exceeding the capacity of the LLC (if no OS

support is provided). CEASER, not only incurs negligible

storage but also avoids the latency of looking up large mapping

tables. Thus, CEASER has lower storage, better performance,

and no reliance on OS support, which makes it feasible to

incorporate randomization in large LLCs.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

81

Ideal-Encryption
14
12
10

8
6
4
2
0

Feistel (2-Stages) Feistel (3-Stages) Feistel (4-Stages)

0 5 10 15 20 25 30 35 40
Hamming Distance (Num Bit-Flips in Output of LLBC)

Fig. 15. Avalanche Test for demonstrating the diffusion property of the proposed LLBC. We flip a random bit of the physical line address and measure the
hamming distance change in the ciphertext of LLBC. Feistel-Network with 3 stages (red circle) or 4 stages (dotted-line) provide bit-flips close to an ideal
encryption (bar graph). However, having only two stages in the Feistel-Network is insufficient to provide close-to-ideal bit-flips for the Avalanche Test.

C. Software-Based Mitigation Techniques

Cache attacks can be mitigated by rewriting the security-

sensitive applications to not keep critical information (such as

encryption tables) in memory and instead compute the critical

information on-the-fly [13], [24]. Unfortunately, such imple-

mentations tend to be 2x to 4x slowdown [24]. Our solution

avoids the effort in identifying critical pieces, rewriting the

software, and the slowdown of such methods.

D. Randomized Addressing for Cache and Memory

Prior studies [25]–[28] have used XOR-based indexing

functions for reducing conflicts in cache-sets and memory-

banks. However, such functions can be learned by an adversary

using timing-based attacks. Once the attacker obtains the

mapping for one machine, the attacker can use the information

to attack other machines that use the same mapping functions.

Start-Gap Wear-Leveling [29], [30] of non-volatile mem-

ories used Feistel-Network for static randomization of the

entire memory space, however, with Start-Gap the keys for the

Feistel-Network remains unchanged during the system uptime.

IX. CONCLUSION

To mitigate conflict-based cache attacks, this paper proposes

an efficient design that randomizes the memory line to cache

location mapping without relying on storage-intensive indirec-

tion tables or OS support. Our solution, CEASER, accesses the

cache with an encrypted line-address and performs periodic

remapping of the address space to limit the time the adversary

has to learn the mapping. CEASER provides strong security

(tolerates 100+ years of continuous attack), has low perfor-

mance overhead (1% slowdown), requires a storage overhead

of less than 24 bytes for the newly added structures, and

does not need any support from the OS/software. While we

analyzed CEASER only for a shared LLC, CEASER can also

be used to protect against attacks on other shared structures,

such as against directory-based attacks [31]. Exploring such

extensions are a part of our future work.

APPENDIX-A: AVALANCHE TEST FOR LLBC

Claude Shannon identified confusion and diffusion as the

two vital properties for a secure cipher [32]. Confusion is the

property that the ciphertext should depend on several bits of

the key, thus obscuring the connections between the two. In

our proposed implementation of LLBC, each bit of the SPN

is dependent on half of the bits of the respective key, thus

satisfying the property of confusion. Diffusion is the property

that the change of even a single bit of the plaintext should

(statistically) change half of the bits in the ciphertext.
1

In this section, we demonstrate the diffusion property for

our proposed implementation of LLBC, using an Avalanche

Test [33], [34]. We take a random 40-bit PLA (P1) and com-

pute the encrypted output (E1). Then, we randomly flip one bit

of the PLA (P2) and recompute the encrypted output (E2). We

compute the hamming distance between the encrypted outputs

(E1 and E2). For an ideal encryption algorithm, we expect

close to half of the bits of the encrypted output to change.

To compute the hamming distance for an ideal encryption,

we model each bit flip as a Bernoulli random variable with

probability p = 0.5 across 40 bits. For our proposed LLBC, we

perform the Avalanche Test using 1 million Monte-Carlo trials

(1000 different random configuration of the LLBC are used

and for each such design we perform the test for 1000 random

values). Figure 15 shows the percentage of times the number

of bits in the encrypted value changed by a given amount (from

0 to 40 bits). The bar graph shows the variation expected for

an ideal encryption. We show the data for Feistel-Network of

Figure 5 with 2-stages, 3-stages, and 4-stages. With a 2-stage

Feistel-Network, the number of hamming distance change in

the encrypted output is less than ideal (10-12 bits flip instead

of 18-22 bits). However, with a 3-stage or a 4-stage Feistel-

Network, we get diffusion close to ideal encryption. Thus,

Feistel-Network with 3-stages (delay of 18 gates, or only 1

cycle) or 4-stages (delay of 24 gates, or 2 cycles) are sufficient

for providing strong diffusion. Nonetheless, CEASER can be

implemented with alternative designs of block-ciphers as well.

1Diffusion causes the lines that are conflicting in the Physical Address
Space (PAS) to get scattered randomly in the Encrypted Address Space (EAS).
For example, consider an alternative circuit that computes EAS=XOR(PAS,
Key). This circuit does not provide a good amount of diffusion as one bit-flip
of PAS causes exactly one bit-flip in the EAS. If two PAS lines A and B form
eviction set on say Cache-Set-X, then with such a circuit, (A XOR Key) and
(B XOR Key) will still form an eviction set (on some other Cache-Set-Y).

P
ro

b
a

b
il

it
y
 (

%
)

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

82

REFERENCES

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” ArXiv
e-prints, Jan. 2018.

[3] D. J. Bernstein, “Cache-timing attacks on AES,” Tech. Rep., 2005.
[4] Z. Wang and R. B. Lee, “New cache designs for thwarting software

cache-based side channel attacks,” in 34th Annual International Sympo-
sium on Computer Architecture (ISCA), 2007.

[5] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Trans. Archit. Code Optim., vol. 8, Jan. 2012.

[6] J. Kong, O. Aciicmez, J. P. Seifert, and H. Zhou, “Architecting against
software cache-based side-channel attacks,” IEEE Transactions on Com-
puters, vol. 62, July 2013.

[7] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” in IACR Eprint archive, 2005.

[8] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security,” in 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2008.

[9] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Mapping the intel
last-level cache,” in IACR Cryptology ePrint Archive, 2015.

[10] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy, May 2015.

[11] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 1st ed. CRC Press, Inc., 1996.

[12] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing
access-based cache attacks on aes to practice,” in IEEE Symposium on
Security and Privacy (S&P), 2011.

[13] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of aes,” in The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology, 2006.

[14] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2014.

[15] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-based
side channel attacks,” in 44th Annual International Symposium on
Computer Architecture (ISCA), 2017.

[16] C. Percival, “Cache missing for fun and profit,” in The Technical BSD
Conference, 2005.

[17] B. Schneier, “Description of a new variable-length key, 64-bit block
cipher (blowfish),” in Fast Software Encryption, Cambridge Security
Workshop, 1994.

[18] M. Luby and C. Rackoff, “How to construct pseudorandom permutations
from pseudorandom functions,” SIAM J. Comput., vol. 17, 1988.

[19] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” SIGOPS Oper. Syst. Rev.,
vol. 36, Oct. 2002.

[21] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in cloud
computing,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2016.

[22] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
level protection against cache-based side channel attacks in the cloud,”
in 21st USENIX Security Symposium, 2012.

[23] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. B. Abu-
Ghazaleh, D. V. Ponomarev, and A. Jaleel, “Ric: Relaxed in- clusion
caches for mitigating llc side-channel attacks,” 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2017.

[24] “Software mitigations to hedge AES against cache-based software side
channel vulnerabilities,” in IACR Eprint archive.

[25] A. González, M. Valero, N. Topham, and J. M. Parcerisa, “Eliminat-
ing cache conflict misses through xor-based placement functions,” in
International Conference on Supercomputing (ICS), ser. ICS ’97, 1997.

[26] H. Vandierendonck and K. D. Bosschere, “Xor-based hash functions,”
IEEE Transactions on Computers, vol. 54, 2005.

[27] A. Seznec, “A case for two-way skewed-associative caches,” in Annual
International Symposium on Computer Architecture (ISCA), 1993.

[28] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and as-
sociativity,” in International Symposium on Microarchitecture (MICRO),
2010.

[29] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in International Symposium on
Microarchitecture (MICRO), 2009.

[30] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini,
“Practical and secure pcm systems by online detection of malicious write
streams,” in International Symposium on High Performance Computer
Architecture (HPCA), 2011.

[31] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in
a non-inclusive world,” in IEEE Symposium on Security and Privacy
(S&P), 2019.

[32] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
System Technical Journal, vol. 28, 1949.

[33] H. Feistel, “Cryptography and computer privacy,” Scientific American,
vol. 228, 1973.

[34] “On the design of s-boxes,” in Advances in Cryptology CRYPTO ’85
Proceedings, ser. Lecture Notes in Computer Science, H. Williams, Ed.,
1986, vol. 218, pp. 523–534.

