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   Abstract 

In this paper, we provide an overall perspective on the teaching and learning of discrete mathematics. Our aim is to highlight 

what research has been conducted in this area and to connect it to existing research ideas for future work. We begin by char- 

acterizing discrete mathematics and its role in the school curriculum, highlighting themes, topics, and mathematical practices 

that distinguish discrete mathematics. We then present potential benefits of focusing on discrete mathematics topics for 

mathematics education; in particular, we discuss the accessibility of topics in discrete mathematics, the connection to math- 

ematical processes and affect, and the relevance of discrete mathematics in our current society. We also emphasize discrete 

mathematics from an international perspective, highlighting studies from the US, Italy, France, Chile, and Germany, which 

are across all school levels–primary, middle, and secondary school, and with some implications for post-secondary educa- 

tion. We particularly discuss discrete topics including number theory, combinatorics, iteration and recursion, graph theory, 

and discrete games and puzzles; we describe and situate these topics within literature. We also suggest the additional topics 

of game theory and the mathematics of fairness that we hope to see addressed in future studies. 

 

1 Introduction 

 

Our intention is that this paper provide an overall perspec- 

tive on the teaching and learning of discrete mathematics by 

discussing some past and current research on the teaching 

and learning of discrete mathematics. The intent is to pro- 

mote further research, particularly in some under-researched 

areas. In particular, this paper 

• describes discrete mathematics and its role in the school 

curriculum, 

• discusses some general possible affordances for learning 

discrete mathematics, 

• describes these affordances in more detail with respect 

to a variety of discrete topics, 

 

• examines the current state of research on the teaching 

and learning of discrete mathematics in schools 

worldwide, and 

• suggests areas where research is lacking and proposes 

questions for further exploration. 

 

 

 

 

 

 

 

We note that this special issue supports these goals by 

including studies and analyses from the US, Italy, France, 

Chile, and Germany, across all school levels–primary, mid- 

dle, and secondary school, and with some implications for 

post-secondary education. 

 
2 Characterizing discrete mathematics 

for mathematics education 
 

To begin, we must tackle the obvious yet difficult question: 

What is discrete mathematics? Most broadly, the term ―dis- 

crete‖ is in contrast to the term ―continuous,‖ and thus dis- 

crete mathematics can be viewed as mathematics that deals 

with discrete rather than continuous mathematical structures 

and objects. In short, we characterize discrete mathemat- 

ics as involving topics related to discrete objects and struc- 

tures (such as integers in a domain like combinatorics), as 

opposed to topics focusing on continuous objects (such as 

real numbers in a domain like calculus). A more precise 
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definition is much debated and difficult to articulate (Maurer, 

1997). 

In our attempt to characterize discrete mathematics, we 

focus on discrete topics that research indicates are appro- 

priate for school level mathematics. For example, some 

research describes how some of these topics can be inte- 

grated into the current curriculum in ways that both enhance 

and support the current curriculum (Amit & Neria, 2008; 

Blanton & Kaput, 2005; Carraher et al., 2008; Kenney, 

1996; Radford, 2008; Rivera & Becker, 2008; Steele, 2008; 

Yeap & Kaur, 2008). Other research indicates how discrete 

topics support the competencies (such as problem solving, 

argumentation, communicating, and modeling) that have 

become increasingly more important in mathematics educa- 

tion (Batanero et al., 1997; Dawkins & Roh, 2022; Doorman 

& Gravemeijer, 2009; Greefrath & Vorhölter, 2016; Grenier 

& Payan, 1999; Guerrero-Ortiz et al., 2018; Lockwood et al., 

2021; Maher et al., 2011; Street & Street, 1998; Vogel, 2005; 

Weigand, 2014). 

The discrete topics discussed in papers included in this 

special issue are: 

o Number theory 

o Combinatorics 

o Iteration, recursion, sequences, difference equations 

o Vertex-edge graphs 

o Discrete puzzles and games 

 
Other discrete topics that we consider relevant are: 

 
o Game theory 

o Voting 

o Fair division 

o Cryptography 

o Information processing 

 
These topics cannot be taken in isolation of what are con- 

sidered core mathematical practices, processes, and compe- 

tencies. Just as there are disagreements about the different 

topics that comprise discrete mathematics, there are differ- 

ent lists of mathematical competencies. As reported in Niss 

et al. (2016): 

• Australia issued a report in 1994 describing processes 

including investigating, conjecturing, problem solving, 

using mathematical language. 

• In the late 1990s and early 2000s, Denmark issued 

reports in which they listed eight mathematical compe- 

tencies: mathematical thinking, problem handling, mod- 

eling, reasoning, representations, symbols and formal- 

ism, communication, and tools. Their report influenced 

a number of other countries, for example Germany. 

• By 2011, Korea had added two more core competencies, 

creativity and information processing. 

• Latin American countries rephrased these processes as 

capabilities, competencies or abilities. 

• In the United States, the National Council of Teach- 

ers of Mathematics through its ―Process Standards‖, 

recommended the competencies of reasoning, problem 

solving, communication, making connections, and use 

of representations (NCTM, 2000). These are basically 

supported by the Common Core State Standards Initia- 

tive ―Standards for Mathematical Practice‖ (NGA and 

CCSSO, 2009). 

It is precisely in the development of such process-related 

competencies that discrete mathematics and discrete models 

are accorded special importance at school (Cai, 2010; Door- 

man & Gravemeijer, 2009; Goldin, 2010, 2018). Therefore, 

it is also useful to consider research on the development of 

such competencies through activities in discrete mathemat- 

ics contexts. 

In addition, there is another important area, affect, which 

influences the learning of mathematics and can also play a 

special role in the context of learning discrete mathematics 

(Gibson, 2012; Goldin, 2018; Hart & Martin, 2018). We 

address this potential through the teaching of discrete math- 

ematical topics in more detail in Sect. 4.2. 

Based on the combined experience of the authors of this 

paper (along with other teachers, researchers and curriculum 

developers), and acknowledging the diverse range of discrete 

mathematics topics and related mathematical competencies, 

we propose a focused, practical characterization of discrete 

mathematics, aimed at clarifying discrete mathematics for 

the school curricula (Anderson et al., 2004; DeBellis & 

Rosenstein, 2004; Dolgos, 1990; Ferrarello & Mammana, 

2018; Hart, 1985, 1997; Hart et al., 2008; Hart, 2010; Hart 

& Martin, 2018; Hirsch et al., 2015; Kenney, 1996; Kenney 

& Hirsch, 1991; Lockwood et al., 2020a, 2020b; NCTM, 

1989, 2000; Ouvrier-Buffet, 2020; Rosenstein, 2007; Sand- 

efur, 1997; Sandefur et al., 2018). This leads to the follow- 

ing curricular characterization of discrete mathematics in 

the schools, in terms of key themes, topics, and distinctive 

mathematical competencies: 

• Key themes that can be addressed through discrete math- 

ematics: networks, enumeration, sequential change, stra- 

tegic decision making, fairness, and the Internet. 

• Specific discrete topics that address these themes: graph 

theory, combinatorics, iteration and recursion, game the- 

ory, the mathematics of voting and fair division, discrete 

games and puzzles, and number theory including some 

mathematics of information processing such as coding 

and cryptography. 
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• Distinctive mathematical practices emphasized in the 

teaching and learning of discrete mathematics: recursive 

thinking, combinatorial reasoning, algorithmic problem 

solving, discrete optimization, and, above all, discrete 

mathematical modeling. 

We believe discrete mathematics can be a key compo- 

nent for many countries in helping their students achieve the 

mathematical power and competencies they desire. In later 

sections of this paper, we will elaborate on the identified 

discrete topics and themes, along with their interplay with 

key mathematical practices, as we discuss past, current, and 

proposed future state of the art research on teaching and 

learning discrete mathematics. 

 

 
3 Discrete mathematics in school curricula 

As a result of the Cockcroft Report (Cockcroft, 1982) in 

England and the NCTM Standards (NCTM, 1989) in the 

US, there was an effort to reform the teaching of mathemat- 

ics. Similar discussions took place in other countries (Niss 

et al., 2016). These discussions promoted competencies such 

as problem-solving, reasoning, discussion, group work, and 

use of digital tools. 

Much of the reform movement was to ensure the educa- 

tion of all students, and was seen as a way to bring equity 

into the teaching of mathematics. This was expressed best 

by the NCTM‘s call for 'Mathematics for All‘ (Schoenfeld, 

2004; Wright, 2012). As such, the reforms were as much 

about the processes and competencies developed in studying 

mathematics as they were the particular topics themselves. It 

was argued that a number of discrete topics might be more 

accessible and attractive to students having difficulty with 

the standard curriculum (NCTM, 1989). 

In addition, because of the increasing prevalence of tech- 

nology in the workplace, many of these discrete topics were 

becoming important in different applications of mathematics 

in a variety of fields, and were seen by some as essential to 

students‘ mathematical literacy. 

However, this reform movement did not always go for- 

ward. There was a backlash by the traditionalists in the US, 

for example, because it was claimed that these changes led 

to a less rigorous mathematics curriculum. A revision of the 

Standards (NCTM, 2000) aimed at a compromise of a bal- 

ance between skills and process. This revision deemphasized 

many of the discrete topics promoted in the original Stand- 

ards. These political battles over the mathematics curriculum 

resulted in discrete mathematics largely being ignored in 

these countries. Of the discrete mathematics topics speci- 

fied above, very few are part of the standard curriculum in 

most of the countries we are familiar with. Through personal 

communication, it appears that: 

• Combinatorics is included in the secondary curriculum 

of several countries, including Spain, US, England, Ger- 

many, Hungary, Brazil, Israel. 

• Connecting recursive patterns and sequences with alge- 

braic formulas is taught, to some degree, in Spain, Ger- 

many, and the United States. 

• Graph theory is included in Italy and some isolated 

state curriculum in the US. 

In England, students focusing on mathematics can take 

a special track in which they have extensive exposure to 

discrete mathematics. In many countries, it appears that 

the opportunities for dealing with discrete mathematics in 

schools, especially when it goes beyond combinatorics, are 

often only seen on the level of optional recreational math- 

ematics (Colipan & Liendo, 2022; Gravier & Ouvrier- 

Buffet, 2022; Greefrath et al., 2022). 

We wonder if one contributing issue for the lack of dis- 

crete topics taught in the schools may be that the term 

`discrete mathematics‘ is not well understood. Perhaps, 

each of the discrete topics mentioned above should be con- 

sidered individually. For example, fair division algorithms 

and economic game theory are almost self-explanatory. 

While combinatorics sounds complicated, counting is 

clearly important. Instead of using the term `graph theory‘ 

which may be misleading to some, we could talk about 

vertex-edge graphs or networks, which most people are 

familiar with. Iteration can be described in terms of simple 

recursive situations, such as repeatedly folding a piece of 

paper or compounding of interest, along with its accessi- 

bility through the use of spreadsheets. Therefore, it might 

be more productive to talk about the individual discrete 

topics than the discipline as a whole. This is also intended 

to describe the mentioned topic areas of discrete math- 

ematics for school more clearly once again. We therefore 

shortly go into a little more detail on the most common 

discrete topics and how they may support mathematical 

competencies. 

 
4 Potentil benefits of discrete mathematics 

topics for mathematics education 
 

We see the potential benefits of teaching discrete mathemati- 

cal topics in three broad areas, and some of these benefits 

have been highlighted in existing literature. The first poten- 

tial benefit is offered by the content, which is accessible and 

offers interesting and relevant topics for teaching and learn- 

ing (Anderson et al., 2004; DeBellis & Rosenstein, 2004). 
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The second potential benefit is the learning of mathematics 

and the acquisition of general mathematical competencies 

(Coenen et al., 2018; Vorhölter et al., 2019) including affect 

(Goldin, 2018) that influences the learning of mathematics 

and the third potential is the relevance of discrete mathemat- 

ics for living in the modern world (Hart & Martin, 2018; 

Rosenstein, 2007). In this section, we will discuss general 

benefits and in Sect. 6, the benefits resulting from specific 

discrete mathematics topics. 

 Accessible topics for teaching and learning 

 
As early as the end of the 1980s, there were calls to inte- 

grate discrete mathematics into teaching, not only in higher 

education but also in schools (Dolgos, 1990). Advocates 

of discrete mathematics have noted that problems in dis- 

crete mathematics are relatively accessible, in the sense 

that a student may be able to understand what a problem 

is asking or can explore a situation without needing a lot 

of prior mathematical experience (Anderson et al., 2004; 

Devaney, 2018; Ferrarello & Mammana, 2018; Rosenstein, 

2007). This is often because the problems themselves do 

not require knowledge of technical definitions or specific 

mathematical knowledge, and students can exemplify and 

explore objects. The discrete nature of the objects would 

seem to lend itself to this accessibility. This accessibility of 

discrete mathematics is something that seems to be agreed 

upon by many mathematicians, mathematics educators and 

mathematics education researchers, and it is often used as 

an argument for the importance of the inclusion of discrete 

mathematics in curriculum (Anderson et al., 2004; Burghes, 

1995; Dolgos, 1990; Hart & Martin, 2018). 

While we note that this is an aspect of discrete math- 

ematics that would benefit from more systematic study 

and research, this accessibility has come through in some 

research studies, but not as an explicit focus of the study. 

Some of the research on the teaching and learning of discrete 

mathematics with younger students highlights not only the 

accessibility of topics but that this accessibility can help 

students make sense of the current curriculum. For example, 

iterative problems and difference equations can help students 

learn algebra (Amit & Neria, 2008; Blanton & Kaput, 2005; 

Carraher et al., 2008; Radford, 2008; Rivera & Becker, 2008; 

Sandefur et al., 2018; Steele, 2008; Yeap & Kaur, 2008). 

Even very young students can reason about combinatorial 

problems in meaningful ways (de Beer et al., 2015; Maher 

et al., 2011). English (1991, 1993) reports on young chil- 

dren‘s strategies as they engage with combinatorial prob- 

lems. As another example, students can naturally `invent‘ 

graph theory to solve a problem (Ferrarello & Mammana, 

2018; Greefrath et al., 2022; van den Heuvel & Krabben- 

dam, 1991). We can only wonder how much better would 

the students‘ work be if they already knew some graph 

theory or had previous experience with counting or recur- 

sive problems? 

For many topics in discrete mathematics, students ranging 

from young children to undergraduate students can be posed 

similar questions and have a reasonable chance at investigat- 

ing the problem at their different levels. This results in self- 

differentiating tasks that allow individual approaches to the 

problem (Ostkirchen & Greefrath, 2022). For example, how 

many 2-color towers can I make of height 5, can be extended 

to more complicated problems for older students by increas- 

ing the number of colors and the height of the tower. Maher 

et al. (2011) describe the use of combinatorial problems in 

such contexts among students in a longitudinal study. Stu- 

dents as young as the third grade can investigate recursive 

structures they build with toothpicks and stickers while high 

school students can develop recursive models of bacteria 

growth and the spread of epidemics, which is a simplified 

version of models studied by epidemiologists (Radford, 

2008; Sandefur & Manaster, 2022; Yeap & Kaur, 2008). 

This highlights what we mean by accessibility – students 

can have access to mathematical topics and ideas regard- 

less of background and prerequisite knowledge (DeBellis & 

Rosenstein, 2004; Ferrarello & Mammana, 2018). 

Although we have several examples of empirical research 

that implicitly demonstrates the accessibility of discrete 

mathematics and the value of this accessibility, we note that 

there is also more work to be done. There is a need for the 

field to focus on the issue of accessibility more systemati- 

cally and explicitly. While there seems to be some agreement 

on the accessible nature of these discrete problems, how 

accessible are they? And what do we mean by that? How is 

that measured? What does it mean for discrete mathematics 

to be accessible, and how can we tell if discrete mathematics 

is any more or less accessible than other mathematical tasks? 

We see potential value in investigating issues of accessibility 

in three ways. 

• First, we think it is important for researchers to conduct 

empirical studies that explore the accessibility of discrete 

mathematics – perhaps through reports on mathemati- 

cians and students‘ views and experiences of discrete 

mathematics, through data that shows students without 

much prerequisite knowledge engaging in discrete math- 

ematics tasks, or through explicit investigations into how 

students engage with both discrete and continuous con- 

cepts. 

• Second, there is a need for theoretical explorations into 

the nature of accessibility in mathematics, exploring 

what makes problems or topics accessible and what 

might make discrete mathematics particularly accessible 

for students. 

• Third, it‘s more than just accessibility that‘s important, 

it‘s about how it can then be used and understood. Does 
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it allow for deeper understanding of mathematics (con- 

ceptual and practices)? Can we leverage accessibility 

to develop both deeper understanding of concepts and 

methods, as well as developing mathematical practices? 

Is accessibility a way of dealing with diverse learning 

groups and designing inclusive mathematics teaching? 

We will go into the discussion of accessibility in more 

detail when we consider specific discrete topics in Sect. 6. 

 Promotion of mathematical processes 
and affect 

 
Discrete mathematics offers opportunities for students to 

engage with affect in mathematics and on general mathemat- 

ical processes and competencies, mentioned earlier. Even 

though discrete mathematics seems particularly accessible 

to students, this does not mean that it is easy or does not 

provide access to rich and powerful mathematical thinking. 

Indeed, while some topics in discrete mathematics are acces- 

sible in that they have easy access to engagement, they are 

in some cases notoriously difficult. Student difficulties are 

reported in many areas of discrete mathematics, e.g. in suc- 

cessfully solving combinatorics problems, and implement- 

ing graph theory algorithms (Annin & Lai, 2010; Batanero 

et al., 1997; Kavousian, 2010; Medová et al., 2019). While 

recursion can support students‘ understanding of algebra, 

finding explicit solutions to many difference equations is 

difficult or impossible (Sandefur et al., 2018). So, we argue, 

discrete mathematics offers an opportunity for students to 

think critically about important mathematical concepts and 

to developcompetencies (Doorman & Gravemeijer, 2009). 

With regard to mathematical thinking, there is ample evi- 

dence that students who engage with discrete mathematics 

are reasoning robustly about difficult mathematical concepts 

(Batanero et al., 1997; Lockwood et al., 2021; Maher et al., 

2011; Weigand, 2014). In this way, discrete examples could 

also be used to counter the difficulties in understanding non- 

linear multiplicative problems (Tillema & Gatza, 2016). 

Greefrath et al. (2022) deal with students thinking about real 

connections using graph theory, which the students came up 

with on their own. So, engaging with this context can pro- 

mote modeling competence (Greefrath & Vorhölter, 2016). 

For many discrete mathematics topics, the accessible 

nature of the tasks and objects lend themselves to explora- 

tions, where students can generate examples, make conjec- 

tures, observe patterns (Vogel, 2005), articulate and justify 

generalizations, reason with multiple representations, and 

engage in modeling (Doorman & Gravemeijer, 2009; Guer- 

rero-Ortiz et al., 2018; Street & Street, 1998). In this area, 

discrete mathematics content can also be considered as a tool 

for mathematical work from a process-related perspective. 

For example, graphs can be considered as modeling tools 
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(Greubel et al., 2020; Thomas et al., 2015). Colipan and 

Liendo (2022), and Gravier and Ouvrier-Buffet (2022) 

deal with students developing problem solving and 

reasoning skills through discrete puzzles. As a 

consequence, we can say there is an indication that topics 

in discrete mathematics can develop some critical 

reasoning and ways of thinking. In addition, we can 

highlight other discrete-specific ways of thinking. For 

example, we see opportunities for students to engage with 

modeling, problem solving and proof (Dawkins & Roh, 

2022; Grenier & Payan, 1999). 

Returning to the example of How many 2-color towers 

can I make of height 5 (Maher et al., 2011), we note the 

potential for students at a variety of ages and backgrounds 

to acquire mathematical competencies based on these 

explora- tions. For younger students, exploring this task 

may involve various processes, namely (a) selecting a 

desirable repre- sentation, (b) engaging in systematic, 

organizational listing that requires precision, and (c) 

justifying that they have all possible towers. For older 

students, they may additionally start to conjecture and 

generalize, articulating the number of towers that could be 

made of greater height or involving more colors. Indeed, 

Maher et al. (2011) describe students‘ development from 

building towers to connecting them to Pascal‘s triangle 

and the binomial theorem. 

Motivation, emotions and beliefs as components of 

affect can have an influence on the acquisition of 

mathematical competencies (Di Martino & Zan, 2010; 

Hannula, 2012). Topics in discrete mathematics are seen 

as suitable for con- veying a new image of mathematics to 

teachers and students. Mathematical discoveries on 

problems that are not part of the teaching routine are 

easier to make here than in many other areas of 

mathematics. This is true even for students who may be 

considered less able (Goldin, 2004). For exam- ple, is game 

theory suitable for promoting affective, meta- affective, 

and conative affordances? To learn this, various aspects 

must be taken into account so that this potential of 

discrete mathematics can be exploited. A potential 

problem is not explicitly addressing affect and relying on 

the fact that discrete mathematics is motivating to keep 

students engaged. Interest may not be enough to keep them 

working. A second problem can arise if one is too quick to 

introduce the conven- tional terms and solution procedures 

in different areas, such as graph theory and difference 

equations, without giving students the opportunity to 

discover things for themselves (Goldin, 2018). 

 Relevance of discrete mathematics 

 
The relevance of discrete mathematics can be seen 

broadly in the ―key themes‖ highlighted in the curricular 

characteri- zation of discrete mathematics that we proposed 

in Sect. 2. Key themes addressed through discrete 

mathematics include: networks, enumeration, sequential 

change, strategic decision 
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making, fairness, and the Internet. Networks (addressed by 

graph theory) are ubiquitous in modern life, from transporta- 

tion networks to social networks to the Internet. Enumera- 

tion (combinatorics) is concerned with finding ―how many,‖ 

for example how many ways committees can be formed from 

given group members or how many sales routes are possible. 

Sequential change (modeled with iteration and recursion) is 

step-by-step change, like yearly population growth or hourly 

medicine concentration in a patient‘s system. Strategic 

decision making (as modeled by game theory) is needed in 

―games‖ of politics, economics, or entertainment. Fairness 

(as analyzed through the mathematics of fair voting and fair 

division) is essential in democratic societies to ensure fair 

elections, fair representation, and fair allocation of goods 

and services. 

Another content aspect that is relevant to mathemat- 

ics education has to do with equity and social justice 

(D‘Ambrosio, 1999). Mathematics education should also 

support students‘ better understanding of social, political 

and justice issues in our world. Addressing social issues is 

very possible within the framework of mathematical mod- 

eling. It is recommended that more emphasis be placed on 

mathematical modeling, which opens up the possibility of 

addressing social issues in school mathematics (Julie & 

Mudaly, 2007). Many of these models use discrete math- 

ematics as a basis. 

The digitization of society in the twenty-first century 

requires a focus on mathematical competencies that com- 

plement the work of computers. An important element of 

these competencies concerns the understanding of the math- 

ematics underlying the mathematical work that computers 

do (Gravemeijer et al., 2017). Understanding how computers 

work and their applications requires knowledge of discrete 

mathematics (Pollak, 2007). However, the special oppor- 

tunities provided by technology are also pointed out in the 

context of teaching discrete mathematics (Durcheva & Var- 

banova, 2017; Weigand, 2014). In the context of a short 

Canadian experiment to explore the potential of introducing 

complex dynamical systems into curricula, it was discussed 

that the transition to a computer treatment involves as a fun- 

damental element one or more types of discretization, for 

example of time, of space or of matter. Overall, computer 

simulation played an important role here (Caron, 2019). 

Ziegenbalg (1984) sees discrete models in the context of 

computer use in mathematics education. 

Because of the fact that computers require discretized 

information and all numbers are represented using bits and 

are approximations of real numbers, the computer necessi- 

tates discrete mathematics. Thus, it is not an exaggeration to 

say that discrete mathematics is a key feature for preparing 

students to be well-versed in computers and in program- 

ming. In this way, discrete mathematics topics are related 

closely to the kinds of things that are necessary for computer 
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science—combinatorics, logic, recursion, iteration, all 

emerge as relevant topics with clear applications in 

computer science. This is one way in which discrete 

mathematics truly is the mathematics of our modern world. 

Because we want students to use computers and to harness 

their power, we lit- erally need them to have knowledge of 

discrete mathematics to do so effectively. In connection 

with the work with com- puter algebra systems, difficulties 

could also be found due to the limitations of the technology 

through discrete structures and finite precision in 

connection with the representation of functions (Artigue, 

2002; Zbiek et al., 2007). Here, a con- scious look at 

discrete structures offers the chance to better understand 

the outputs of the technology. 

Recently, some researchers have also examined more 

explicitly connections to computing, looking at ways in 

which programming may support and enrich students‘ 

com- binatorial reasoning, and, conversely, how 

combinatorics may be a useful topic in introducing 

programming. Findings suggest that there is promise in 

leveraging natural aspects of programming (iteration, 

nested loops) in supporting ideas like the multiplication 

principle in counting (Lockwood & De Chenne, 2020, 

2021). Because computers must deal with discretized data, 

there are more ideas within discrete math- ematics that 

can be examined in the context of computing; such ideas 

are ripe for more investigation. 

 
5 Relation between discrete 

mathematics and students’ cultural 
upbringing 
and learning style 

Some students do well with the algebra-to-calculus 

curricu- lum sequence, but others struggle. One problem 

may be that the language of algebra itself can be puzzling 

to a novice. The variety of ways that variables are used 

causes confusion for some students: as a changing value; 

a known quantity; two quantities, one whose value is 

treated as known and the other value which must be 

found (Moss & Lamberg, 2019). For example, colleagues 

have reported that some of their college students think 

that f(x) means multiply f by x. The confusion with 

variables may be less of a problem with many of the 

topics of discrete mathematics. Vertex-edge graphs are 

more about reasoning than about variables, and there is a 

visual component connected to the reasoning. Iter- ative 

models can be analyzed using spreadsheets which help 

clarify the meaning of the variables and their 

relationships. There may also be a conflict between the 

way mathemat- ics is taught and the way the student 

learns. Students gain knowledge through different sensory 

modalities; visual, auditory, tactile, kinesthetic. Some 

students are solitary learners while others are social 

learners. As a person learns, there is an interaction between 

what is being taught and the student, which differs from 

student to student. For example, 
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Shade (1997, p. 83) notes that `a pictorial image should not 

be expected to convey the same information to all individu- 

als or groups.‘ While the way students learn is clearly indi- 

vidual, there is considerable evidence that students raised 

in different cultures have different learning styles. In a com- 

parison of students from the USA, Hong Kong, Japan and 

Korea, Ma and Ma (2014) found that cooperative learning 

methods had a greater effect on the mathematical perfor- 

mance of the East Asian students than these methods pro- 

duced in the United States. On the other hand, in an explora- 

tory study of South African mathematics students, Bosman 

and Schulze (2018) found that different learning styles were 

conducive to better or worse performance. In this study, the 

higher achievers tended to prefer to work individually. The 

authors recommended further exploratory research be con- 

ducted to determine the impact of demographic variables on 

learning style and achievement. We note that many discrete 

mathematics topics, including solving discrete puzzles or 

playing then analyzing simple zero-sum games (discussed 

later) lend themselves naturally to cooperative learning set- 

tings, thus possibly appealing to students who learn better 

in a cooperative learning setting. As these studies indicate, 

cooperative learning is not necessarily better for weaker stu- 

dents or for stronger students: it depends on the student and 

possibly their culture. 

A study of the learning styles and study strategies of Bru- 

nei secondary students (Shahrill et al., 2013) found that the 

high mathematics achievers have a more auditory-language 

learning style than the less successful mathematics students. 

They also found that females who were more successful in 

mathematics scored higher on visual-language and auditory- 

visual kinesthetic learning styles than their male counter- 

parts. They argued that it might be effective to coach low 

achieving students in the use of learning styles and study 

strategies that empirical research identifies as possibly help- 

ful. A Russian study (Sheromova et al., 2020) surveying a 

variety of literature, discussed the different learning styles 

of students, some of which may be based on left-brain versus 

right-brain dominance. As such, they summarized differ- 

ent teaching methods that might work for different students, 

depending on their learning style. Algebra and calculus have 

traditionally been taught using only one approach, although 

increasingly, algebra and calculus are being taught using 

active learning methods. Discrete mathematics offers a vari- 

ety of topics that can naturally be taught in a variety of ways, 

including auditory-visual and visual-language. 

To further support this point of view, Nasir et al. (2008) 

includes a nice collection of studies on the relationship 

between learning mathematics, culture, and learning styles. 

A collection of studies reports on how African American 

high school basketball players, Brazilian street vendors, 

Liberian Kpelle students (primarily rice farmers), and oth- 

ers had difficulty with traditional mathematics teaching but 
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made sense of mathematics through relevant contextual 

situations. This agrees with Shade (1997) who stated that 

research indicates that African Americans students gain 

their knowledge `most effectively through kinetic and 

tactile senses, through the keen observation of the human 

scene, and through verbal descriptions.‘ Other articles 

(Berry, 2003; Boykin, 1986; Dance et al., 2000; Stiff, 

1990) also suggest dealing with the different learning 

styles of Afri- can American students could result in an 

improvement in their mathematics understanding and 

learning. These stud- ies indicate that some students, 

especially social learners, may greatly benefit from 

discrete mathematical modeling of real-world contexts. 

These results indicate that stu- dents such as these might 

respond better to mathematics introduced by recursive 

topics, such as population growth, buildup and elimination 

of chemicals in the body, the spread of epidemics (Sandefur 

& Manaster, 2022), to name a few. These recursive 

models can actually support the learning of algebra, as is 

discussed later. Or maybe students respond to the visual 

nature of graphs related to topics such as the traveling 

salesman problem. Gravier and Ouvrier-Buffet (2022) 

describe a visual puzzle whose analysis leads to an 

understanding of the difference between local and global 

maximum and minimum. If mathematics provides a 

means to study a problem and analyze a means to improve 

the situ- ation, these students have a reason to put in the 

effort to learn the mathematics. 

We note that Shade (1997) indicated that there is insuf- 

ficient evidence to determine what changes are necessary 

to improve the learning of African American students, and 

this is clearly true of the other students described in the 

previ- ously mentioned studies. This indicates a need for a 

cadre of researchers to determine how to effectively 

address the needs of students with different learning 

styles. As stated in NCTM (2000, p. 14), `Teachers need 

help to understand the strengths and needs of students 

who come from diverse linguistic and cultural 

backgrounds, who have specific dis- abilities, or who 

possess a special talent and interest in math- ematics. 

They can then design experiences and lessons that 

respond to, and build on, this knowledge.‘ 

As this research indicates, students who come from dif- 

ferent cultures, are of different genders, and/or who have 

different learning styles may perceive mathematics in dif- 

ferent ways. In previous sections, we discussed three 

aspects of discrete mathematics: accessibility, promotion 

of math- ematical processes, and relevance. The questions 

that need to be answered are, how, in what ways, and for 

what students might discrete mathematics, integrated 

appropriately into the curriculum, provide an improved 

access into mathemati- cal processes and competencies? 

For different students, the answers will surely be different. 

Discrete mathematics is accessible and can be visualized 

because of the discreteness. Through drawing graphs or 

constructing discrete objects 
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with available manipulatives, discrete mathematics can be 

both tactile and kinesthetic in ways that currently taught 

material in the early years often is, and in late secondary 

school is not. The problems lend themselves to cooperative 

learning for the social learner. Many of the problems can be 

made to relate to the students‘ environment, and thus pro- 

vide meaning and relevance of mathematics to real problems 

in the students‘ world. It is important to note that we are 

not proposing the teaching of discrete mathematics because 

weak students cannot handle algebra. We are proposing that 

discrete mathematics might provide a better access to math- 

ematics for some students because it incorporates our ideals 

of mathematical thinking within a context that may appeal 

to different learning styles or different cultural underpin- 

nings. In addition, as discussed elsewhere, many discrete 

topics support the learning of traditional curricula. Might 

this alternate approach to the curriculum work for students 

for which the current approach does not? This is an area that 

should be studied. 

 

6 Description of discrete topics included 
in papers in this special issue 

 
A number of authors advocate the inclusion of discrete 

mathematics in the curriculum. Some discrete topics support 

and extend the more traditional curricula of various coun- 

tries while other discrete topics enable a range of topics that 

do not fall into the traditional algebra to calculus paradigm 

(Anderson et al., 2004; Burghes, 1995; Dolgos, 1990; Hart 

& Martin, 2018). 

We now describe the discrete topics for school mathemat- 

ics discussed in other papers in this issue: combinatorics, 

number theory, graph theory, recursion, and discrete games 

and puzzles. In doing so, we characterize them in terms of 

some of their compelling pedagogical features, highlighting 

how some might enhance and support current curriculum 

while others may extend it. We also describe some of the 

relevant research on the teaching and learning of each of 

these topics. 

We intend that this deeper discussion of these topics will 

lead to a stronger consideration of them in how they support 

and enhance both the learning of already established curric- 

ula, and the development of desired mathematical competen- 

cies. Through a stronger interconnection of topics, to which 

the study of integrated areas of discrete mathematics can 

contribute, relationships to the real world can also become 

clearer (Street & Street, 1998). Discrete mathematical top- 

ics are thus an integral part of mathematics, and they help 

broaden and modernize the school curriculum, supporting 

desired mathematical processes and competencies (Ander- 

son et al., 2004; van Drunen, 2017). 

 Number theory 

 
We start our discussion with number theory, because it is 

the discrete topic most people are familiar with. Number 

theory is primarily considered the study of properties of the 

integers. The integers represent a discrete structure, and thus 

the ways in which students may engage with number theory 

suggests they are engaging with a discrete topic. Throughout 

the grades, students study properties of integers, such as 

• multiplication and division algorithms, 

• number systems and bases, 

• prime numbers and the prime factorization of natural 

numbers, and 

• Pythagorean triples. 

These topics make number theory the discrete topic that 

is perhaps the most pervasive in the schools, particularly in 

the lower to middle grades (Anderson et al., 2004). 

The competency of proving and reasoning has received 

considerable attention in the research community (Gar- 

diner, 2004; Heinze et al., 2004). As suggested by Dawk- 

ins and Roh (2022), number theory presents a fertile area 

for understanding the ways students reason. In this paper, 

college students compare arguments about statements such 

as 

• If integer x is divisible by 2 and by 7, then x is divisible 

by 14 

• If integer x is divisible by 4 and by 6, then x is divisible 

by 24 

Number theory topics can contribute to students‘ prob- 

lem solving, and reasoning and proof abilities (Anderson 

et al., 2004) through problems related to greatest com- 

mon divisor, modular arithmetic, mathematical induction, 

check digits, number systems, and others. While these 

topics are generally included in curricula, more research 

is needed to investigate effective ways to teach number 

theory topics to students, as well as to explore how these 

topics support, and are supported by, students‘ problem 

solving, reasoning, and proof activities. 

Integers are pervasive in the lower to middle grades. 

Understanding the integers within the base 10 system and 

being able to convert numbers to other bases and operate 

with them can deepen students‘ understanding of standard 

arithmetic algorithms they learn with integers. Other bases 

can also serve students in their understandings of loga- 

rithms and exponents, and in working with binary digits 

in computing. Further, integers form the core for young 

children to begin mathematical modeling because they can 

both visualize numbers of objects through pictures and 
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can manipulate them with the use of blocks or tiles. 

For 
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example, Colipan and Liendo (2022) consider the problem 

of how many squares can one square be partitioned into. 

Students can draw squares within squares to investigate 

this problem. It is clear that for any integer n, a square can 

be partitioned into n
2
 squares. What other integers work 

and don‘t work? Problems such as this develop problem 

solving skills, modeling and the use of a variety of differ- 

ent representations. 

In a very real sense, integers and natural numbers are the 

building blocks for the mathematics that comes later. 

 Combinatorics and enumeration 

 
Combinatorics is a domain that deals primarily with enu- 

meration. Like number theory, combinatorial enumeration 

is related to natural numbers, but here the focus is on deter- 

mining cardinalities of sets of outcomes and ways in which 

to enumerate discrete objects. Most practically in school 

mathematics, it involves the solving of ―counting problems,‖ 

in which we determine how many outcomes satisfy certain 

constraints. Such problems are important not only for practi- 

cal applications (such as determining the strength of a pass- 

word system), but also because they tend to be accessible 

problems that require little mathematical background but can 

still be challenging to master. Further, such problems lend 

themselves to desirable practices such as generalizing (Lock- 

wood & Reed, 2021; Reed & Lockwood, 2021), proving, 

using multiple representations, and attending to precision 

(Lockwood et al., 2020a, 2020b; Maher & Martino, 1996; 

Maher & Speiser, 1997). Combinatorics ranges from simple 

counting problems involving Cartesian products (English, 

1991, 1993) to more sophisticated counting situations that 

require clever ways to encode outcomes (Lockwood et al., 

2018), and it includes topics like the binomial theorem and 

combinatorial proofs of binomial identities. As such, it hits 

upon relevant aspects of the school curriculum from the pri- 

mary grades through the secondary grades, and into college. 

In addition, these problems lead to important connections 

to probability, statistics, and computer science. Lockwood 

et al., (2020a, 2020b) provide a comprehensive review of 

research on combinatorics education. 

Combinatorics has received considerable attention in the 

mathematics education research literature within the past 

few decades (Batanero et al., 1997; Coenen et al., 2018; 

English, 1991; Hurdle et al., 2016; Lockwood, 2013, 2014, 

2022; Schuster, 2004; Tillema, 2013). It is also included, to 

some degree, in the curricula of many countries including 

Israel, Brazil, Germany, Spain, and Hungary; because of 

its role in the curricula, considerable work has been done 

in investigating the teaching and learning of combinatorial 

topics among students at a variety of ages in these and other 

countries (Batanero et al., 2005; Borba et al., 2011; Hart & 

Sandefur, 2018; Höveler, 2018; Vancsó et al., 2018). 
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There is ample evidence that counting can be 

difficult for students, particularly because counting 

problems can appear to lack reliable solution procedures 

and problems that are similar in structure can appear 

different from each other (Annin & Lai, 2010; Batanero 

et al., 1997). Researchers have noted that students can find 

it difficult to understand and justify counting formulas and 

distinguish between problem types, and that it is difficult 

to verify counting problems (Batanero et al., 1997; 

Eizenberg & Zaslavsky, 2004; Lockwood et al., 2015). In 

light of such challenges, though, many researchers have 

attempted to identify ways to improve student success in 

solving count- ing problems. This has included identifying 

productive ways of thinking, identifying potentially useful 

instruc- tional interventions, and examining ways in which 

students think about particular ideas and topics in 

combinatorics, such as Cartesian product problems, 

multiplication, equiv- alence, binomial coefficients, 

combinatorial proof, and symbolization and 

representations (Coenen et al., 2018; English, 1991; 

Erickson & Lockwood, 2021a; Halani, 2012; Lockwood, 

2014; Lockwood & Purdy, 2020; Lock- wood & Reed, 

2020; Lockwood et al., 2021; Maher & Speiser, 1997; 

Maher et al., 2011; Montenegro et al., 2021; Soto et al., 

2022; Tillema, 2013, 2014, 2018; Tillema & 

Gatza, 2016; Wasserman & Galarza, 2019). 

In addition to studies that explore combinatorial 

top- ics in and of themselves, there has also been work that 

has examined other practices and competencies in the 

context of combinatorics. This has included work that has 

examined generalization, computing, problem solving, and 

proving in combinatorics. Such work has emphasized 

ways in which combinatorics can support students‘ 

practices and compe- tencies (Coenen et al., 2018; Ellis et 

al., 2021; Erickson & Lockwood, 2021a, 2021b; 

Lockwood, 2022; Lockwood & De Chenne, 2020, 2021; 

Lockwood et al., 2020a, 2020b; Maher & Martino, 1996; 

Maher et al., 2011; Reed & Lock- wood, 2021). 

In this issue, several papers focus on the teaching and 

learning of combinatorics. These include; 

• examining ways in which combinatorial tasks can sup- 

port teachers‘ algebraic reasoning (Tillema & Burch, 

2022), 

• focusing on productive ways of thinking about 

combina- torics in a high school discrete mathematics 

setting in the United States (Soto et al., 2022), 

• examining ways in which a middle and high school 

stu- dent used shifts in representational registers to 

reason about a formula for binomial coefficients 

(Lockwood & Ellis, 2022), and 

• developing frameworks for students‘ combinatorial 

rea- soning (Antonides & Battista, 2022). 
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Such work will serve to further the field, and it repre- 

sents the many different approaches and perspectives that 

researchers are currently taking to improve the teaching 

and learning of combinatorics as a key aspect of discrete 

mathematics. Because of combinatorics‘ natural connec- 

adding three toothpicks at each stage. From this, students 

generated the formula 3n + 1 for the number of toothpicks 

used to construct n squares. The students went from the 

recursive pattern of adding three, which we could write 

using the difference equation, 

tions to domains like probability, statistics, computer sci- 

ence, research on its teaching and learning will likely evolve 
sn+1 = sn + 3, 

as the field‘s understanding of those topics evolve as well. In 

this way, investigations into teaching and learning combina- 

torics can flexibly adapt to include new kinds of questions 

and directions. 

 Iteration and recursion 

 
By iteration, we mean the repeated application of a pro- 

cedure to the previous application of the procedure. This 

topic is discrete in a different sense from number theory 

and combinatorics, two topics that deal specifically with 

integers. Iteration is discrete in the sense that there are 

an integer number of steps, but the resulting numbers 

often come from the real numbers, not the integers. In 

this article, we use iteration and recursion interchangeably, 

although in computer science, recursion usually means 

something different. 

Recursive thinking has been used for thousands of 

years. Archimedes approximated pi by finding the circum- 

ference of polygons with an increasing number of sides. 

Fibonacci discussed the second order difference equation 

an+2 = an+1 + an in the thirteenth century. Pascal intro- 

duced his triangle in the seventeenth century. The recur- 

sive proof technique of mathematical induction has been 

used informally for over two thousand years, and its mod- 

ern form has been used for several hundred years, in one 

form or another. Before the development of calculus, much 

mathematics was done using iteration. The development 

of calculus made the need for difference equations less 

important, and thus the teaching of iteration in the K-12 

curriculum became almost non-existent. The pervasive- 

ness of computers, particularly spreadsheets, has swung 

the pendulum back to where iteration is quite important 

again, as discussed below. 

There is research that iterative problems support stu- 

to the explicit algebraic formula. 

Amit and Neria (2008) had students considering a 

Hanukah problem in which on each day, one more candle 

was lit than the previous day. From this problem, which 

can be written as 

sn+1 = sn + n + 1, 

students were able to generate the quadratic formula for the 

total number of candles lit. 

Similar results showing how iterative problems both 

engage students and support the learning of algebra have 

been obtained by others (Blanton & Kaput, 2005; Carra- 

her et al., 2008; Radford, 2008; Steele, 2008; Yeap & Kaur, 

2008). 

As described in these papers, recursive problems with 

simple constant change, such as the add 3 toothpicks prob- 

lem, or linear change, light one more candle than the pre- 

vious day, have been shown to support younger students‘ 

learning of algebra by generating meaningful formulas from 

the context of the situation. Given this, it is surprising that 

there has been little research on the classical and well-known 

topics of growth and decay processes and how they can sup- 

port the learning of algebra. These problems occur when 

there is constant proportional change: the addition or sub- 

traction of the same proportion at each stage. This occurs 

in the addition of interest, simple population growth, the 

removal of a fraction of radioactive material, or the removal 

of a certain proportion of medicine from the body. Such 

problems result in difference equations of the form 

sn+1 − sn =± psn or sn+1 = (1 ± p)sn. 

Similarly to the repeated addition or subtraction, such 

equations are just repeated multiplication which results in 

an exponential function, 

dents‘ learning of algebra. For example, as seen in Fig. 1, 

Rivera and Becker (2008) had students construct a line of 

n squares out of toothpicks, which they did by repeatedly 

sk = (1 ± p)
k
s0. 

 

Fig. 1 Recursive procedure for 

constructing a line of squares 
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These authentic and interesting examples from the real 

world of the students unite iterative processes with an under- 

standing of exponential functions, just as the constant addi- 

tion problems develop students‘ understanding of linear 

functions (Castillo-Garsow, 2013; Schonger & Sele, 2021). 

Discrete recursive models allow calculations with a 

spreadsheet (Keune & Henning, 2003). This easy access 

also allows the comparison of different approaches and 

gives insight into the influence of the assumptions made 

at the beginning of the modeling process. This approach 

therefore supports a deep understanding of characteristics of 

one of the competencies of mathematical modeling. These 

ideas have already been examined in empirical studies: For 

example in a small case study on mathematical modeling of 

growth and decay processes with exponential functions, it 

could be shown that "thinking continuously is fundamen- 

tally different from thinking discretely" (Castillo-Garsow, 

2013, p. 1451). A further study reported that students' under- 

standing of discrete versus continuous graphs of growth 

processes, which result by taking the limit as h goes to 0, 

might also be influenced by the nature and representation 

of underlying variables (Leinhardt et al., 1990). This topic 

area is interesting because the problems can be modeled 

both continuously and discretely (Guerrero-Ortiz et al., 

2018). Studies from the field of modeling also show that the 

consideration of a change can be modeled continuously or 

discretely, and that the discrete view is an important exten- 

sion (de Beer et al., 2015; Doorman & Gravemeijer, 2009; 

Guerrero-Ortiz et al., 2018). 

As mentioned in Sect. 5, it is possible that recursive 

models can support some students‘ engagement with top- 

ics of social importance, such as drug models, epidemics 

(Sandefur & Manaster, 2022), population growth, change in 

genetic makeup, or management of renewable resources. It 

could also be that recursive models, similar to the toothpick 

construction, can engage students just by being fun. 

We note that there are connections between recursion 

and combinatorics in that some counting problems can be 

solved recursively, for example, the counting of the number 

of Hanukah candles lit (Amit & Neria, 2008) and the number 

of seats in a theater (Burrel et al., 1991). In fact, the binomial 

coefficients can be found recursively using Pascal‘s triangle. 

We suggest that recursive problems support students‘ 

mathematical competencies by having them reason about 

variables and functions through meaningful contextual 

situations. For more discussion on the possible connection 

between recursion and learning algebra, see Sandefur and 

Manaster (2022). There are several additional papers which 

suggest a variety of ways that the introduction of recursive 

problems can possibly support, not only the learning of alge- 

bra, but the development of a variety of mathematical pro- 

cesses and competencies (Doorman & Gravemeijer, 2009; 

Rosenstein, 2007; Sandefur et al., 2018). 

 

 

 
Fig. 2 Vertex-edge graph on left, directed graph on right 

 

For several decades, some mathematicians and mathemat- 

ics educators have promoted the inclusion of iteration and 

recursion throughout the school curriculum, but it has not 

happened. Our hope is that new research studies in math- 

ematics education will show that the introduction of recur- 

sive problems, combined with the use of spreadsheets, (a) 

supports a deeper learning of many algebraic concepts, (b) 

improves the understanding of the different uses of vari- 

ables, (c) increases students‘ appreciation of the usefulness 

of mathematics, and (d) improves students problem-solving 

skills. Armed with evidence of the advantages of teaching 

recursion, we will then be able to make an even stronger case 

for its inclusion as a core part of the curriculum. 

 Graph theory 

 
By `graph theory‘, we mean vertex-edge graphs, examples 

of which would be flowcharts and organizational charts. Fig- 

ure 2 displays a (vertex-edge) graph on the left, in which 

vertices are connected by edges. On the right in Fig. 2 is a 

directed graph in which the edges have direction. A street 

map in which the streets are all two-way could be consid- 

ered as a graph where the streets are the edges, and corners 

where streets meet are the vertices. A street map in which 

the streets are all one-way would be considered a directed 

graph. One of the first applications of graph theory is Euler‘s 

Konigsberg bridge problem in which the edges are bridges 

and the vertices are the different land-masses connected by 

the bridges (Grötschel & Yuan, 2012). 

Vertex-edge graphs provide discrete mathematical mod- 

els for many situations involving networks or relationships 

among a finite number of objects. Examples include: 

• Solving problems related to prerequisite relationships 

(e.g., project scheduling with critical paths and PERT 

charts) 

• Solving problems related to conflict relationships (e.g., 

managing conflicts in chemical storage, radio interfer- 

ence, or social conflict through vertex coloring) 

• Finding optimal routes and networks (e.g., shortest travel 

paths, least expensive street maintenance routes, optimal 

sales networks, data structure trees, and models for social 
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networks and the Internet, using graph theory topics such 

as shortest path, Euler paths, Hamilton paths, trees, min- 

imal spanning trees,) 

We note that several discrete topics can be integrated 

together to support understanding. Suppose students are 

given the combinatorial problem to count the number of 

handshakes if everyone in a group of n individuals shake 

hands. This problem can be visualized as a vertex-edge 

graph where the vertices are the people, and an edge is a 

handshake between two people. This problem can also be 

studied recursively by looking at the number of additional 

handshakes if another person is added, which gives the dif- 

ference equation 

This is very well possibly due to the given real situation if 

the students have no experience with graph-theoretical top- 

ics. Medová et al. (2019), compared the work of university 

students on several graph theory problems; the Chinese post- 

man problem, the shortest path problem, and the minimum 

spanning tree problem. More research is necessary in order to 

identify what and how students of different ages learn when 

studying vertex-edge graphs, and what are effective methods 

for teaching and learning this topic. 

 Discrete games and puzzles 

 
The popularity of both Martin Gardner‘s puzzle columns in 

Scientific American and the Rubik‘s Cube, among other 

sn+1 = sn + n, 
puzzles, show the appeal of discrete puzzles and games. They 

involve many of the competencies that many coun- 

which has the explicit (n choose two) combinatorial solution 

n(n - 1)/2. 
 

Thus, students are considering a simple combinatorial problem 

both graphically, iteratively, symbolically, and alge- braically. Note 

the similarity of this problem to the Hanukah candle problem in 

Sect. 6.3. 

Since Euler‘s development of graph theory with the 

Königsburg bridge problem in 1736, the study of vertex-edge graphs 

has been a significant field of mathematics (Grötschel & Yuan, 

2012). The problems can become quite difficult, such as finding a 

minimal path for a traveling salesman, which is NP-complete. 

Other problems, such as finding Euler paths and Euler cycles are 

relatively easily solved using simple algorithms. Graph theory is 

accessible, visual, can relate to physical situations with which 

students can actively engage, and thus, can be introduced in 

elementary school (DeBellis & Rosenstein, 2004; Ferrarello & 

Mammana, 2018). 

While many classroom implementations of graph theory repeat 

the same simple examples, such as the Konigsberg bridge 

problem, again and again, without effectively devel- oping graph 

theory through the grades, clear sequenced rec- ommendations for 

teaching and learning graph theory are available (DeBellis et al., 

2009; Hart et al., 2008). We encour- age researchers and curriculum 

developers to consider these sequenced grade-band 

recommendations, as they develop curriculum materials, design 

research studies, and possibly propose other recommendations. 

Graph theory comprises important concepts, develops thinking 

processes that most current curricula encourage, and thus 

warrants inclusion in the school curriculum. How- ever, there are 

only a few studies in this area so far (Ferrarello & Mammana, 2018; 

Ferrarello et al., 2022; Medová et al., 2019). Greefrath et al. (2022) 

shows how, because of the ease of accessibility of graph theory, 

students can develop mod- els related to their world and address 

issues of optimization. 

tries' mathematics curricula are promoting, such as reason- ing, 

and problem solving (Stein, 1999). Discrete games and puzzles 

are topics not normally promoted for inclusion in the school 

curriculum. We believe this is a mistake and that this topic has 

great potential for not only engaging stu- dents, but in furthering 

the development of mathematical processes and competencies 

(Scholz, 2007). On the other hand, there does not appear to be a 

large amount of math- ematical education research on the 

affordances of puzzles in students‘ learning. 

There are discrete games and puzzle which can be used to 

support the learning of a variety of areas of the current 

curriculum. These games can also appeal to a variety of 

learning styles and develop several of the desired competen- cies 

mentioned earlier. We already mentioned such a discrete puzzle 

(Colipan & Liendo, 2022) in which students try to see how 

many different numbers of squares a given square can be 

partitioned into. This problem supports problem solv- ing and 

communication while supporting the understanding of some 

simple geometry related to squares and rectangles. Gravier and 

Ouvrier-Buffet (2022) discuss the puzzle of putting some number 

of traps in a garden to guarantee stop- ping a pest. This problem 

involves existence, or sufficiency, in that if we put n in the garden 

that clearly prevents the pest, then n works. It deals with non-

existence proofs in showing that no matter how n traps are set, it is 

possible for a pest to invade. Interestingly, this puzzle also deals 

with optimiza- tion in finding the minimum number of traps 

needed. This puzzle goes further into optimization by showing the 

differ- ence between minimal, an arrangement of n traps that can- 

not be reduced, and minimum, the fewest number of traps 

needed if arranged properly, which can be lower. 

Nim games involve two (or more) players who take turns 

removing objects from one or more piles of objects under certain 

conditions. One of the simplest games is when there is one pile of 

items and each of two players takes turns removing 1, 2 or 3 

items, with the player removing the last 
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item winning. Suppose we are interested in how many items 

must be in the pile so that the player going second can ensure 

a win. Students, working recursively, can first discover 4 

works, then 8, and, similar to the discussion in Sect. 6.3, dis- 

cover the formula that if there are 4n items, then the player 

going second can always win. The argument is that whatever 

player one chooses, 1, 2, or 3 items, player 2 can choose the 

opposite, 3, 2 or 1 for a total of 4, reducing 4n to 4(n-1). 

The inductive thinking developed in playing this game is 

the basis for proof by induction. We also note that the game 

of Nim can be made as easy or as difficult as one wants by 

varying the number of piles and the number of items a player 

can pick up on their turn, allowing students at different levels 

to be both challenged and successful. 

Some puzzles involve both optimization and recursion, 

such as the Tower of Hanoi, in which some number of disks 

must be moved from one peg to another in a minimum num- 

ber of moves. If there is one disk, 1 move is required, two 

disks require 3 moves, three disks require 7 moves, and stu- 

dents discover that if n disks require mn moves, then n + 1 

disks require 2mn + 1 moves. They also can develop the 

algebraic solution that mn = 2n
 − 1, connecting students‘ 

algebraic skills through the puzzle and recursion. 

Does solving such puzzles develop students‘ reasoning 

abilities as well as their communication skills when they 

have to explain their solutions? Puzzles such as these may 

help students develop comparable skills to those used by 

mathematicians when faced with a research problem (Coli- 

pan, 2018): experimentation, conjecturing, building models, 

and construction of arguments. 

We believe that mathematics education research will 

show that some games and puzzles, such as the ones men- 

tioned here, have the potential to support the learning of the 

current curriculum, such as an understanding of optimiza- 

tion, the development of geometric understanding through 

explorations, and support for learning algebra through recur- 

sive solutions, as also discussed in Sect. 6.3. In addition, 

we hope it shows that student engagement supports their 

problem solving and communication skills. Research is also 

needed to (a) determine which games support what learning 

at what age levels, (b) which learning styles are supported by 

which games, and (c) which games are appropriate at which 

grade levels. Once there is research showing these affor- 

dances, the games and puzzles should be easy to incorporate 

into the curriculum as most are easy to learn. 

 
 
7 Other relevant discrete topics 

There have been calls by many mathematicians and math- 

ematics educators to include a variety of other discrete topics 

in the mathematics curriculum, such as game theory, the 

mathematics of fairness, information processing and cryp- 

tography (DeBellis & Rosenstein, 2004; Hart & Martin, 

2018; NCTM, 1989; Rosenstein, 2007). Each of these topics 

offers something unique in student learning. The amount of 

research on the affordances of students learning these topics 

is minimal, at best. 

We can only conjecture why these topics have not had a 

greater impact in the school curriculum. First, teachers are 

generally not familiar with these topics, so teacher prepara- 

tion would need to be considered. Second, there has been 

little in the way of coherent proposals for the developmen- 

tally appropriate teaching of any of these topics through- 

out the curriculum, nor has there been much in the way of 

age-appropriate materials introduced into the textbooks for 

children throughout the grades. Third, many mathematicians 

view these topics as tangential to mathematics. 

Many readers may not be familiar with these topics. 

Because of space issues, we give a brief overview of just 

two of them, including some examples that explicate some 

of the possible affordances of them. We hope this discussion 

furthers research on these topics. 

 
 Game theory 

 
Game theory was primarily developed by the mathemati- 

cian John von Neumann and economist Oskar Morgenstern 

in the 1940s. Game theory has become an important tool 

in economics and simple games help explain a variety of 

human behavior. The idea behind game theory is develop- 

ing an optimal strategy, but it also involves some simple 

probability. Optimality is an important mathematical topic 

that is mostly ignored until algebra and calculus, in which 

case, only one type of optimality is considered, maximiz- 

ing or minimizing functions. Because game theory involves 

playing simple games to get a sense of what it means to 

play optimally, it should work well in a cooperative learn- 

ing setting. The basics of game theory are very intuitive, 

using some elementary algebra and making sense of simple 

matrices. Given its importance in a variety of disciplines, it 

is surprising that game theory has not made more inroads 

into the curriculum. Game theory can both show how to 

make rational decisions and can help in the understanding 

of seemingly contradictory behavior of people. There are 

several different types of simple games where students might 

not only develop reasoning and problem-solving skills but 

use some simple algebra and probability. Since game theory 

is a topic that many readers may not be familiar with, we 

give some examples and discuss how they might support the 

curriculum and develop reasoning abilities. 

We first discuss how zero-sum games can support the cur- 

rent curriculum through solving simple equations, combined 
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with a little probability. Consider the simple two-person 

game as seen in the matrix 
C = 

(1, 1) (−4, 3) 
.
 

(3, −3) (−1, −1) 

A = 
1 0 

−1 −2 
 

Player 1 picks a row and simultaneously, player 2 picks 

a column and the number at the intersection is how much 

player 2 pays player 1 (or player 1 pays player 2 if negative). 

In this case, player 2 will always pick the second column 

since its payoffs are always better, no matter what row player 

1 picks. Similarly, player 1 will always pick the first row. 

So both players break even. This is an example of a pure 

strategy where each player maximizes their results, a sim- 

ple example of an optimization problem. Young students 

should be able to develop this logic through playing this 

game numerous times. 

Mixed strategy zero-sum games involve reasoning, simple 

algebra, a little probability, and optimization. Consider the 

game given by the matrix 

B = 
−1 1 

0 −1 
 

under the same rules as above. In this case, there is no pure 

strategy: if player 2 always chooses column 1, then player 

1 will always choose row 2, but if player 2 always chooses 

column 2, player 1 will always choose row 1. This is an 

example of a mixed strategy game; each player has to mix 

up their choices so the other player cannot take advantage 

of them. Suppose the probability player 1 chooses row 1 is 

p. Then if player 2 chooses column 1, the expected payoff 

for player 1 is 

(−1)(p) + (0)(1 − p) 

while if player 2 chooses column 2, the payoff for player 1 is 

(1)(p) + (−1)(1 − p) 

Player 1 should choose a strategy such that the payoff is 

the same no matter what player 2 chooses, so 

(−1)(p) + (0)(1 − p) = (1)(p) + (−1)(1 − p). 

The solution is p = 1∕3, so player 1 should choose row 

1, one-third of the time, and row 2, two-thirds of the time, 

resulting in an average payoff of −1∕3. A similar calculation 

results in player 2 choosing column 1, two-thirds of the time 

and column 2, one-third of the time. Mixed strategy games 

occur quite frequently in life and are important in under- 

standing economic behavior. 

There are a number of other game theoretic situations 

that might deserve exploration, such as non-zero-sum games 

like the prisoners‘ dilemma, an example seen in the matrix 

The first number is the payoff to player 1 and the second 

number is the payoff to player 2. In this matrix, player 1 

selects a row and player 2 selects a column. Note that what- 

ever row is chosen by player 1, player 2 gets a better payoff 

by choosing the second column. Whatever column player 

2 selects, player 1 gets a better payoff by choosing the sec- 

ond row. This is a pure strategy game in which both players 

choose the second option, resulting in their both losing 1. If 

they had cooperated, they could have both won 1. Playing in 

their own self-interest results in them both losing instead of 

winning. This is again an optimization problem in which if 

the players cooperate, they can achieve their maximum pay- 

off, but if each plays in their own self-interest, they achieve 

a smaller payoff: This is similar to the difference between 

minimum and minimal, discussed in Gravier and Ouvrier- 

Buffet (2022). 

Some games involve simple algebra and probability. The 

reasoning involved in games relates to several mathematical 

competencies: problem solving, modeling, optimization and 

communication, all within an engaging social context. Game 

theory seems to be a discrete topic that is open to investiga- 

tion on its affordances with students learning mathematics. 

There are a variety of other game situations that could be 

considered (Scholz, 2007; Stebler et al., 2013). 

 Mathematics of fairness 

 
Fairness is an important issue in students' lives and in soci- 

ety and government. Some of the mathematics of fairness 

is essential quantitative literacy for informed citizens in 

democratic societies. As such, fair division and fair voting 

are relevant topics for the school curriculum. In the follow- 

ing two subsections we briefly discuss some of the relevant 

mathematics of fair division and fair voting. 

 Mathematics of fair division 

 
An aspect of fairness that students encounter in their daily 

lives is fair division. The essential question is: What is a 

fair share? One way to categorize fair division problems is 

in terms of the objects to be divided. First categorize the 

objects as divisible or indivisible. Then consider the ―same- 

ness‖ of the objects, that is, are they identical or not, het- 

erogeneous or homogeneous. For example, a cake is divis- 

ible while the individual seats of Congress or Parliament 

or antiques in an estate are indivisible. Divisible items are 

sometimes called ―continuous,‖ and indivisible items are 

called ―discrete.‖ In the case of divisible objects, like a cake, 

the most interesting and challenging problems are when the 

divisible object is heterogeneous, like a cake with swirls of 
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Fig. 3 Categorizing fair division 

problems 

 
FAIR DIVISION 
Characteristics 

 

Divisible 

(e.g., cake, land) 

Indivisible 

(e.g., seats of Congress or antiques) 
 

  
Homogeneous 

(e.g., flat tract of land) 

Heterogeneous 

(e.g., hilly land 

with some trees) 

Identical 

(e.g., seats of Congress) 

Non-identical 

(e.g., antiques) 

 

 
frosting or a piece of land with hills and trees. In the case of 

indivisible objects, a key distinction is whether the objects 

are identical, like the seats of Parliament, or non-identical, 

like pieces of furniture in an estate. This break-down of fair 

division problems is shown in Fig. 3. 

Division of indivisible objects is a discrete field that 

involves thinking with fractions and proportions and which 

is easily accessible at middle and secondary school levels. 

It should be engaging for students since it relates to issues 

of importance to many students, fair division of resources. 

It can lead to paradoxes that increase students‘ understand- 

ing of fractions. Since many readers may not be familiar 

with fair division, we present two examples of the division 

of identical indivisible objects. We believe problems such 

as these can support the current curriculum through a better 

understanding of fractions and the understanding of slope 

as a rate of change. 

Suppose one student works 3 h, a second works 5 h and 

a third works 7 h, and there are 22 coins to divide among 

them for their work. Multiplying 22 by the fraction of time 

each student worked gives a division of 

3 × 22∕15 = 4.40, 5 × 22∕15 = 7.33,  and 7 × 22∕15 = 10.27, 
 

respectively. To give a total of 22 coins, one approach is to 

round the largest fraction upward, dividing the coins as 5, 

7 and 10. If instead, there are 23 coins, we get the fractions 

4.60, 7.67, and 10.73, so rounding the two largest fractions 

up has the coins divided as 4, 8, and 11, respectively. There 

is one additional coin, but the first student gets one less coin. 

How can this be fair? 

Fairness examples such as this can help relate a variety 

of seemingly unrelated topics, proportions and lines in this 

case. To understand this seemingly unfair paradox, students 

could let x represent the number of coins. They are then 

evaluating the three lines 

(3∕15)x, (5∕15)x, and (7∕15)x, 

at different values of x. The slopes of the second and third 

lines are larger than the first, so they increase faster as x 

increases, resulting in their fractions overtaking the first, and 

the first student losing a coin. 

 
An alternate method for dividing the coins is to round 

down the fractions to 4, 7 and 10 resulting in 21 coins being 

given. Then multiply by the smallest y that results in one of 

the fractions increasing to the next integer, 

(3 × 22∕15)y = 5, (5 × 22∕15)y = 8,  or (7 × 22∕15)y = 11. 

In this case, y = (11 × 15)∕(7 × 22) ≈ 1.07 is the small- 

est, and the third student gets the extra coin, not the first 

one. For 23 coins, the lowest number that results in two of 

the fractions equaling or being greater than the next inte- 

ger is y = (8 × 15)∕(5 × 23) ≈ 1.04 resulting in the second 

and third students getting extra coins. This method takes 

advantage of the fact that the students who worked more 

hours have lines with larger slopes, and only involves solving 

simple linear equations. 

As another example, suppose students work 13, 12 and 

112 h for a total of 25 coins. In this case, after rounding up 

the largest fraction, the students receive 2, 2 and 21 coins. 

If the first student works an additional hour and the third 

student works 2 additional hours, the division of coins is 

3, 2 and 20, by rounding up the largest fraction. So, the 

third student worked more additional hours and lost a coin. 

How is this fair? Should we instead look at the percent- 

age of additional time worked: The first student worked 

1/13 = 0.077 or 7.7% more time while the third student 

worked 2/112 = 0.018 or 1.8% more time. But should this 

result in the third student losing a coin? This example 

opens students to discussing fractions, change versus rela- 

tive change, and fairness. 

Fair division problems such as these only involve frac- 

tions, lines, slopes and rounding but result in what are 

seemingly unexpected paradoxical behavior. Could study- 

ing examples such as these, where students would come up 

with the different divisions naturally, lead to a different and 

deeper understanding of these topics, and of fairness in gen- 

eral? Could there be interesting student discussions about 

fair ways to distribute the money? 

Paradoxes such as these occurred in American politics. 

For the first example, in 1880, it was discovered that if an 

additional representative was added to Congress, it would 

result in Alabama losing one of their representatives. In the 
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second example, in 1900, Virginia lost a representative to 

Maine even though Virginia‘s population grew by more than 

Maine‘s population. A third example arose when Oklahoma 

entered the US: Its share of representatives was added to the 

House of Representative, which should not have affected the 

other states‘ number of representatives, but New York lost a 

representative to Maine (Caulfield, 2010) (https://en.wikip 

edia.org/wiki/Apportionment_paradox). 

Fairness problems arise with use of fractions within a 

context and the mathematics can relate to real world issues, 

which we have discussed in Sect. 5 as possibly helping social 

learners, among others. While fair division algorithms are 

intuitive, use simple proportions, are accessible to students 

at a variety of levels, there seems to be little research to 

determine if they support critical thinking and a deeper 

understanding of proportions and rate of change. 

Another common example of fair division is fairly divid- 

ing non-identical goods, such as in an estate, among the 

heirs. For estate division, and other such situations that 

involve fair division of non-identical mostly indivisible 

objects, students might productively study the Knaster’s 

procedure (https://mathshistory.st-andrews.ac.uk/Extras/ 

Knaster_fair_division/), for example. In addition, each fair 

division method can be analyzed in terms of common fair- 

ness criteria, such as proportionality, envy-freeness, and 

equitability. 

As discussed, studying fair division situations gives stu- 

dents valuable opportunities to develop proportional rea- 

soning, algorithmic problem solving, and experience using 

mathematics to analyze abstract notions such as fairness. 

 Mathematics of fair voting 

 
Fair voting is vital for democratic decision making. While 

there are different methods of voting, we focus here on 

weighted voting and ranked-choice voting, briefly sum- 

marizing these topics, highlighting some of the relevant 

mathematics and positing some of the educational benefits 

that may be achieved by including these topics in the school 

curriculum. 

In weighted voting, each voter can cast many votes for a 

single candidate or choice. This may sound unfair, but in fact 

when it is used in certain contexts, it is perfectly reasonable. 

For example, consider shareholders in a corporation. Each 

shareholder casts a number of votes equal to the number of 

shares they own. The big issue in such weighted voting situ- 

ations is not the so-called weight of a person's votes, which 

is the number of votes the person casts, but the power of 

their votes, which is a measure of how influential their votes 

are. A common method for measuring power is the Banzhaf 

Power Index method. 

In the following simple example, we briefly describe the 

Banzhaf method. Consider three shareholders, A, B, and C, 

https://en.wikipedia.org/wiki/Apportionment_paradox
https://en.wikipedia.org/wiki/Apportionment_paradox
https://mathshistory.st-andrews.ac.uk/Extras/Knaster_fair_division/
https://mathshistory.st-andrews.ac.uk/Extras/Knaster_fair_division/
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where A has 3 shares (votes), B has 3 shares, and C has 1 

share. Suppose a majority is required for any resolution or 

policy to pass. Thus 4 votes are needed for anything to 

pass. In this situation, nobody's votes alone have the power 

to pass a resolution, all possible pairs of voters have the 

power to pass a resolution, and all voters together can pass 

a resolu- tion. Thus, in a practical sense, all voters have the 

same vot- ing power, even though A and B have three 

times as many votes as C (three times the weight of C)! It 

is this power of votes that is often much more important 

than the number (weight) of votes. The Banzhaf Power 

Index gives an exact quantitative measure of this power, as 

follows. In this situ- ation, there are 4 winning coalitions 

of which each share- holder's vote is critical in 2 of them, 

so the power of each shareholder can be quantified as 2/4. 

In formal terms, each shareholder has Banzhaf Power 

Index 1/2. Note that this method combines logical 

reasoning, counting the number of sets with a certain 

property (combinatorics), and fractions. This leads to 

several interesting research questions that could be 

explored, such as: How do such algorithmic methods of 

evaluating power support (a) students' logical reasoning, 

(b) enumeration of number of sets (discussed in Sect. 6.2), 

(c) their proportional reasoning, and (d) their engagement 

in mathematics through clearly applied settings? 

In ranked-choice voting, each person ranks the candidates 

instead of just voting for their favorite. This gives richer 

data about voters' preferences, and thus allows for a result 

that better reflects the will of the people. Once we have 

collected the voting data, there are different vote-analysis 

methods. Common analysis methods include: (a) 

majority—whoever gets more than half the first-preference 

votes wins, (b) plu- rality—whoever gets the most first-

preference votes win, (c) top-two runoff—use the ranked-

choice voting data to imme- diately have a runoff between 

the top two first-preference vote getters (also called Instant 

Runoff Voting), (d) pairwise- comparison—where you see 

if anyone beats everyone else head-to-head (also called 

the Condorcet method), and (e) points-for-preferences—

where you assign points for prefer- ence and whoever gets 

the most points wins (also called the Borda method). 

For example, suppose there are three candidates in an 

election, A, B, and C, and voters rank the candidates 

accord- ing to the data in Table 1. 

 

 
Table 1 Ranked choice ballots 

 

 Rankings  

A 1 2 3 

B 2 3 1 

C 3 1 2 

Number of Voters   16 voters 10 voters 8 voters 
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The plurality winner in this election is A, since A gets 

the most first-preference votes (16). Consider the top-two 

runoff method: A runs against C since they are the top-two 

first-preference vote getters, and B is eliminated; then the 8 

voters who had B as their first preference will now vote for 

C since they prefer C over A; thus, C wins the runoff with A 

(18–16); so, C is the top-two runoff winner. 

There are connections from ranked-choice voting analysis 

to other areas of discrete mathematics and to other math- 

ematics. Note some immediate connections to combinato- 

rics. You could ask students how many rankings (permuta- 

tions) are possible when there are three, or in general, n, 

candidates; or, in the pairwise-comparison method, where 

all pairs are run off against each other, you could ask how 

many pairs are possible. Connections to graph theory are 

also possible. For example, the pairwise-comparison method 

can be modeled with a digraph (directed graph) by letting 

the vertices represent the candidates and two vertices are 

connected by a directed edge (arrow) from one to the other 

if the one candidate beats the other in their pairwise run- 

off. Then characteristics of the graph relate to the possible 

pairwise-comparison winner. For instance, if there is a cir- 

cuit through all the vertices then there cannot be a pairwise- 

comparison winner. In the points-for-preferences method, 

students get the chance to review and practice their basic 

arithmetic skills as they multiply and add to find the points- 

for-preferences winner. 

As the example above shows, different vote-analysis 

methods can yield different winners, and this can yield 

some paradoxical results. For example, the plurality winner 

can also be the candidate that is least preferred by a major- 

ity of voters, or eliminating a lower ranked candidate can 

switch the places of the other candidates. A fundamental 

result in this area, Arrow's Impossibility Theorem, proves 

that no vote-analysis method is perfect, with no paradoxi- 

cal results, but some methods are better than others. Most 

experts agree that, unfortunately, the worst method, in terms 

of fairness and avoiding paradoxes, is the commonly used 

plurality method (Laslier, 2012). 

Analyzing different voting and vote-analysis methods 

helps students develop their ability to mathematically model 

abstract real-world phenomena, like how influential votes are 

or how fair a voting method is. In addition, it helps develop 

students' logical reasoning, algorithmic problem-solving 

ability, communication, and general appreciation for the use- 

fulness of mathematics. Most concretely, by analyzing fair 

voting, students hone their arithmetic skills and quantitative 

reasoning ability. We encourage more research and profes- 

sional work to figure out how and where the mathematics of 

fair voting can be integrated into the curriculum (for exam- 

ple, see Hirsch et al., 2016), and how it can be effectively 

taught and learned. We also feel that this is a relevant and 

timely topic with clear applications and potential for engage- 

ment with students at a variety of levels. 

 
8 Looking ahead and conclusion 

We have given several convincing arguments that discrete 

mathematics should be more strongly considered in main- 

stream mathematics education. These relate to its acces- 

sibility, the acquisition of general competencies, affective 

benefits, and the utility of knowledge of discrete topics in 

the modern world. 

These topics are important mathematical topics that are 

applied widely. Graph theory is used in a variety of fields, 

such as chemistry, neural networks, organization. Recursion 

is important in computer science and iterative solutions to 

problems occur quite often which can lead to a better under- 

standing of algebraic concepts: while recursion is a valuable 

tool which younger students seem to inherently use; it seems 

to disappear in later grades. Issues related to fairness and 

game theory are areas of intense study in political science 

and economics. Without exposure to these topics, we are 

sending out ill-prepared students. 

Discrete mathematics should be incorporated into the 

school curriculum and educational research should be car- 

ried out accordingly. If the status of discrete mathematics 

remains on the fringes and not a central aspect of curricula, 

this poses a challenge for researchers (especially younger 

scholars) who are interested in studying the teaching and 

learning of discrete mathematics topics. It can be challeng- 

ing to make a case for the importance of one‘s research 

when the topics are not themselves commonly handled in 

the curriculum. There is considerable research on algebra, 

geometry, calculus, and proof…why? These are topics that 

are valued, and researchers can make a case for studying 

them because they are what tend to get taught in classrooms. 

However, we argue that despite such challenges, we also 

need researchers to do work on topics that are not currently 

popular. We hope to have informed the research commu- 

nity about the curricular role of discrete mathematics, its 

educational affordances, and the current state of research in 

this area. We need researchers to further study how discrete 

mathematics is taught and learned and how it fits into math- 

ematics classrooms worldwide. We must start somewhere. 

We want to encourage others to start this process so we, as 

a field, can better understand and appreciate the teaching 

and learning of discrete mathematics. Currently, the best 

researched topic in discrete mathematics is combinatorics, 

and combinatorics has found its way into the curricula of 

many countries for several decades. Based on the success 

of this growing body of research in combinatorics, we want 

to inspire more research in other areas. There are already 
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promising research efforts in the teaching and learning of 

graph theory and sequences (recursion). 

Further, because we value discrete mathematics and 

its impact in society in general, we think we are doing a 

disservice to students who would benefit from opportuni- 

ties to pursue a pathway that focuses heavily on important 

mathematical topics. Some mathematicians go into fields 

such as algebraic structures, geometry, graph theory, and 

a variety of other fields. We, of course, do not think less of 

them because they did not go into analysis: they are going 

into vital fields where they have strengths and interests. On 

the other hand, students who are not successful in algebra 

and calculus are viewed as (or view themselves as) poor 

mathematics students with no chance at being successful 

in mathematics. As we do for mathematicians, why don‘t 

we expose students to the variety of opportunities for rich 

mathematical growth and engagement in topics that are not 

so dependent on algebra and calculus, and even strengthen 

their understanding of these topics through their integra- 

tion with discrete mathematics? We think that discrete 

mathematics offers much promise in that regard. 

However, we also are interested in better understanding 

the teaching and learning of the different areas of discrete 

mathematics—not only to improve the status of discrete 

mathematics, but also to gain a better understanding of 

how best to teach each of these topics, particularly to stu- 

dents with a variety of learning styles. Currently, there are 

several topics in discrete mathematics that are simply not 

well understood or explored, in terms of 

• how they tend to be taught, 

• how students tend to reason about them (what difficul- 

ties or successes they face, etc.), 

• what ways of thinking underlie them, 

there are a couple of related issues to studying the teach- 

ing and learning of discrete mathematics. On the one 

hand, there is a need for our field to make a case for the 

inclusion of discrete mathematics. A different but related 

issue is that we simply need more research on the teaching 

and learning of discrete mathematics. There is a need to 

engage in more research for the sake of better understand- 

ing the teaching and learning of discrete mathematics, for 

the good of the field and the good of us as a research 

community. 

It seems particularly relevant in the modern world to 

consider curricular innovation and educational research in 

this area of mathematics, discrete mathematics, since it is 

so widely used in modern applications. We hope that this 

paper and the following papers in this special issue will 

contribute to this goal and lead to more valuable work in 

this important area of mathematics education.. 
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