
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

44

...

Scaling Directory Cache Coherence in Performance and Power

(SARC COHERENCE)

Ms.Banashree Dash1*, Dr K Venkataramana2

1*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2Assosiate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

banashree@thenalanda.com*, k.venkata@thenalanda.com

THE SARC PROJECT SEEKS TO IMPROVE DIRECTORY COHERENCE'S

EFFICIENCY IN BOTH POWER AND PERFORMANCE TO IMPROVE POWER

SCALABILITY OF SHARED-MEMORY CHIP MULTIPROCESSORS (CMPS). TWO

KEY SOURCES OF INEFICIENCY FOR DIRECTORY COHERENCE PROTOCOLS

ARE ELIMINATED BY THE AUTHORS, WHO DISCUSS HOW TO DO SO: A

TRAFFIC ANALYSIS OF WRITTEN DOCUMENTS AND DIRECTORY

INSTRUCTION FOR IDENTIFYING THE WRITER.

Stefanos Kaxiras

Uppsala University,

Sweden

Georgios Keramidas

Industrial Systems

Institute, Greece

...

......To scale application performance
in the multicore era, we must go beyond
instruction-level parallelism (ILP) and in-
stead rely on explicit parallelism. An impor-
tant issue for advances in this direction is
ease of parallel programming. To this end,
the shared-memory programming model
offers a good starting point. However, we
cannot ignore the issue of power efficiency.
Poor power efficiency—increasing power for
diminishing performance gains—killed the
development of wider ILP architectures. This
danger is also visible in multicores— that is,
when a parallel application experien- ces
sublinear speedup and/or when its power
consumption increases faster than the num-
ber of cores allocated to it.

Hill describes various notions of scalabil-
ity.

1
 For multicores, it is useful to think of

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

45

the scalability of a parallel program in
terms of power performance. In this
article, we use the energy-delay
product (EDP) to study the scalability
of parallel programs. Three forces
shape a parallel application’s power
efficiency (EDP):

● the application’s performance
scalabil- ity (speedup),

● the application’s communication-to-
computation growth rate, and
the working set size and how it fits
in the core caches.

2

We focus on improving power
efficiency for parallel applications in a
shared-memory CMPs. The SARC project
(http://www. sarc-ip.org) provides the
framework. Our approach uses tear-off
cache blocks (blocks that are not
registered in the directory but self-
invalidate on synchronization) to
eliminate invalidation traffic, reduce false
sharing, and upgrade traffic, and writer
pre- diction to eliminate directory
indirection and go to the writers
directly. We thus achieve both power (in
the network and caches) and performance
(for reads and writes) benefits. We
evaluate our approach using Gems and
show significant improve- ments in EDP
over a base MESI protocol—
improvements that increase with core
count.

●

http://www/

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

46

Number of processors Number of processors Number of processors

(a) (b) (c)

2.5 10 8

2.0 8

BASE
6

1.5 6

4

1.0 4
Proposed

Base

Proposed

0.5 2
2

0 0 0
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

(d) Number of processors (e) Number of processors (f) Number of processors

Figure 1. Speedup (a), normalized core energy-delay product (EDP) (b), normalized network and cache EDP averaged over

all Splash-2 benchmarks (c) and normalized network & cache EDP for fft (d), radix (e), and ocean non-cont (f).

fft radix barnes radiosity fmm volrend

cholesky ocean-cont ocean-ncont water-spa water-ns

16 1.0 4

14

12

 0.9

0.8
0.7

3

10 0.6

8

6

4

2

 0.5

0.4

0.3

0.2
0.1

 2

1

Base

Proposed

0
1 2

4

8

16
0

1 2 4 8 16
0

1 2 4

8

16

Bas

e

Pro posed

Energy-delay product scalability
in shared memory CMPs

The SARC architecture assumes a hetero-
geneous multicore processor composed
of general-purpose cores and application-
specific accelerators.

3
 General-purpose cores

have a private cache hierarchy that we call
level-one (L1) (although it might consist of
more than one level) and a last-level cache
before the external memory, called level-
two (L2). General-purpose parallel programs,
such as the Splash-2 benchmarks, run on the
general-purpose cores. All on-chip commu-
nication is point-to-point messaging via a
network on chip (NoC). A directory-based
coherence protocol keeps distributed private
(L1) caches coherent.

4
 The directory is colo-

cated with the shared on-chip L2 cache—
that is, the directory tracks only the on-chip
cache blocks.

EDP scalability depends on the behavior of
core, cache, and network power. Core power,
at first approximation, is fairly stable per core

and increases about linearly with the number

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

47

of cores. This leads
to poor power
efficiency if we use
more cores for
relatively less speedup.
Figure 1 shows the
speedups achieved in
our simulations of a
16-core CMP for
Splash-2 benchmarks
(we discuss the
evaluation setup later
in the article).
Because core EDP
can be derived from
the performance
scalability and average
core power, we can
concentrate instead on
the more interesting
problems of the cache
and network EDP
scalability:

● Network power

is an interplay
between the
capacity-miss
traffic at low
core counts and
the increased
coherence-
communication
traffic at higher
core counts.
Furthermore,
network power
is also affected
by the distances
the mes- sages
travel. As we use
larger networks,
the energy spent
per message
increases.

● Cache power is
also directly
related to
coherence. A
significant
source of ineffi-
ciency is the
directory itself—
specifically, the

directory’s central role in all coher-
ence operations necessitates costly

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

48

...
MULTICORE: THE VIEW FROM EUROPE

(in power and latency) indirections
through it.

● Directory coherence, due to the large
number of messages it sends and the
large number of cache (directory)
accesses it causes, eventually does not
scale well in terms of power and perfor-
mance (EDP). Indeed, as Figure 1
shows, cache-and-network EDP scal-
ability suffers significantly as we run
the Splash-2 benchmarks on an increas-
ing number of cores.

To address these problems, we combine
the use of tear-off cache blocks and writer

prediction. This combination is important
because tear-off blocks make going to the
directory optional. This greatly simplifies
writer prediction, which can be built on
top of a tear-off protocol practically for
free: guess a writer, go to it directly; if it is
indeed the writer, simply create a tear-off
copy. The combined protocol is minimal
in its messaging and requires minimal hard-
ware support over a standard MESI protocol.

Furthermore, we use frugal (very power-
efficient) predictors for the writer prediction.
We use instruction-based prediction with a

smal
l PC-
inde
xed

pred
ictor
(nea

r
the
L1)

and
fall

back
to

simp
le

addr
ess-

base
d

Directory time line

1 T-reader node 0

RO

Cached

No invalidation is sent to T-reader

2

1

Writer 1

R/W

Cached copy
3 Sync 4

destroyed at sync event

5 T-reader node 0

Sync

Writers survive syncs

Cached

R/W

RO
6

Writer 2
7

8
Cached

2

Sync

Invalidation is sent to 1

R/W

Sync

Figure 2. Basic operations with transparent reads and tear-off copies

(tear-off, read-only [TRO] protocol).

RO: Read only R/W: Read/write T-reader: Transparent reader

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

49

prediction when needed. Our predictors pro- vide the necessary accuracy and
improve EDP by as much as 82.62 percent in 16 cores. Furthermore, the EDP
improvement in SARC coherence is not a trade-off be- tween energy and delay,
but rather an im- provement in both.

Transparent reads and tear-off copies
Transparent reads are reads that do not register in the directory and create a

tear- off, read-only (TRO) copy.
5
 The TRO copy is thrown away (self-invalidates)

at the first synchronization event experienced by the core that issued the
transparent read. Figure 2 shows an example. In the figure, the node on the left
transparently reads a clean block (1) by going to the L2/directory. A transparent
read leaves no trace in the di- rectory but gets a clean cache block in read-only
mode (RO); its state is designated tear-off or TRO. A writer (on the right of Figure
2) goes to the directory (2) and obtains the block with read/write permis- sions
(R/W). The writer cannot invalidate the reader because the latter did not register in
the directory. However, the transparent reader is bound to throw away the TRO
block at the first synchronization point (3). The writer, on the other hand,
registered in the directory, does not throw away its copy (4). The self-invalidated
reader sends a new transparent read (5), which, after reaching the directory,
proceeds to fetch the latest value from the writer (6). A second writer (7),
invalidates the previous one (8) and registers its own ID in the directory.

With transparent reads, coherence in the traditional sense—that is, sending
invalida- tions upon a write, is maintained only among writers. We call this writer
coherence. Writers must still register in the directory so the latest value of the cache
block can be safely tracked. A new write simply invalidates the previous writer of the
block (typically, there are no readers registered in the direc- tory). A significant
difference between our work and prior work

5
 is that the writer does not

downgrade with a transparent read. This significantly reduces upgrade traf- fic.
Normal reads still downgrade a writer from read/write permissions to read-only.
The downgraded copy, however, is not a

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

50

TRO and is registered in the directory,
which means that it will be invalidated
by the next writer. Lastly, because the inval-
idation protocol is always active underneath
the transparent read and tear-off mecha-
nisms, we can freely mix invalidation and
tear-off copies, simultaneously, in the same
directory entry.

Correctness with tear-off cache copies
requires that programs be written as if
for a weak-ordered memory system, which
means that tear-off copies require correctly
synchronized programs.

5,6
 As long as syn-

chronization in the program is clearly identi-
fied and exposed to the hardware (to purge
the TRO copies), programs run correctly.
TRO copies are incompatible with data
races such as those used for flag synchroniza-
tion (flag synchronization based on ordinary
reads and writes) because reads might com-
pletely miss all writes, in the absence of any
synchronization among them. Banning such
code practices, however, might ultimately
lead to safer code. Where needed, replacing
flag synchronization with semaphore syn-
chronization corrects the problem. In our
case, the Splash-2 benchmarks run unmodi-
fied, without glitch, on our protocol by sim-
ply making the synchronization primitives
(atomic instructions and lock releases) visible
to the hardware for the purpose of self-
invalidating the TRO copies.

Transparent reads and tear-off copies have
both performance and power implications. In
terms of performance, writes become faster be-
cause reader invalidation (and its acknowledg-
ment) is no longer required; in addition,
upgrade traffic is reduced. When transparent
reads and tear-off copies are coupled with a
weakly ordered consistency model, the
improvement of write performance does not
contribute significantly to the overall perfor-
mance. In large part, weak consistency models
hide write latency,

6
 so its reduction is unim-

portant in this context. Secondary performance
benefits come from removing the invalidation
and upgrade traffic from the network, reducing
congestion and average message latency. On
the other hand, significant power benefits
come from removing much of the invalidation
traffic as well as upgrade traffic.

A possible pitfall when using trans-

parent reads is to needlessly discard at

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

51

synchronization
copies that do not
change (read-mostly
data). This could
negatively impact
both performance
and power by
constantly refetching
such copies after
synchronization
events. To guard
against this, we can
use the directory to
classify whether a
cache block is read-
mostly or fre- quently
written. TRO copies
are appropriate for
frequently written
lines (because self-in-
validation would
replace the frequent
inva- lidations),
whereas invalidation
copies are most
appropriate for read-
mostly lines be-
cause they are rarely
invalidated and can
stay live in the
caches for as long as
needed. In our case,
the tell-tale sign for
read-mostly TRO
copies is that the
directory sees the
same nodes
repeating their
transparent reads for
the same line
without an interven-
ing write. Lebeck and
Wood proposed a
sim- ilar but
distributed
adaptation for tear-
off copies based on
block versioning, in
which the nodes
themselves decide
whether to re- quest
TRO copies.

5
 We

implemented our

adaptation mechanism in the directory and,
although it adds marginal benefit, it also
increases the directory’s complexity and
cost. For this reason, in the rest of this article,
we omit directory adaptation in the interest
of clarity.

Writer prediction: Avoiding
directory indirection

Although transparent reads and tear-off
copies reduce the invalidation traffic, another
significant source of inefficiency remains in di-
rectory protocols: the indirection through the
directory. The directory (whether centralized
or distributed) is a fixed point of reference to
locate and obtain the latest version of the
data from the writer or invalidate its sharers.
It is difficult and rather complex to avoid an in-
direction via the directory,

7
 which leads to the

classic three- or four-hop invalidation proto-
cols, shown in Figures 3a and 3b.

Our main contribution is in exploiting
the properties of transparent reads and tear-
off copies, and, with a simple and minimal
protocol, go directly to the writers (by pre-
dicting their identity), skipping the directory
when possible. In essence, we let the writers
assume the role of the directory (the central
role of coherence) but revert back to

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

52

...
MULTICORE: THE VIEW FROM EUROPE

directory indirection (the safety net) when
we cannot locate the writers. We can freely
intermix the TRO and the TRO enhanced
with writer-prediction with the base invalida-
tion protocol at any time and for any cache
block.

Reads
In directory protocols, a read goes to the

directory to find the location of the latest ver-
sion of the data. The last writer then forwards
the correct data using a three-hop protocol
(Figure 3b) or sends it back via the directory
with a four-hop protocol (Figure 3a). TRO
copies, however, let the reads avoid going to
the directory altogether. Rather, reads try to
obtain the data directly from the writer if
they can locate it.

We use prediction to locate the current
writer. Based on the history, a reader sends a di-
rect request to a predicted writer (Figure 3d). If
this node has write permissions (read/write)
for the requested cache block, the prediction

is
corr
ect:
the
nod
e is
the
(one
and
only)
write
r of
the
bloc
k
and
has
the
lates
t
copy

Figure 3. Writer prediction aims to avoid the indirection via the directory

(when possible) and go directly to the writer. Directory indirection protocols

are either three-hop (a) or four-hop (b), depending on whether the data

returns to the directory. Writer prediction protocols: no prediction (c);

correct prediction (d); and misprediction (e).

(e) —/ I / TRO

ITRO

4-hop

mis- R

pred
1 2

H

4 Data

Misprediction

W

3

2-hop 2

Data W (d)

R ITRO pred

1
H

Correct prediction

(c)

3-hop

— TRO
 1

R

3

W Data
2

No prediction

H

(b)

2
 W Data R/WRO Data

update

3-hop

H
 1

R —/IRO 3

(a)

R/WRO Writer W

Data 3
Data 4

—/IRO R

Reader
4-hop

1
Home(dir)

H
Data

update 2

—: Miss TRO: Tear-off read only

I: Invalid R/W: Read-write RO: Read only

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

53

of the data. If the node is in any other state (including knowing nothing about
the block), it bumps the request to the di- rectory (Figure 3e). From there, the
request is routed to the correct writer and back to the reader (as in a normal three-
hop proto- col). The penalty for a misprediction is one extra message (indirection
via the wrong node).

Avoiding directory indirection for reads is important in two ways. First, reads, in
con- trast to writes, are performance-critical, meaning a reduction of their latency
directly reflects on overall performance. Second, di- rectory indirection accounts for
a significant part of the read traffic. Eliminating it imme- diately impacts network
power and perfor- mance. Writer prediction yields a two-hop transaction when
correct, or a four-hop transaction on a misprediction. A simple cal- culation reveals
that any prediction accuracy over 50 percent yields both performance and power
benefits.

Writes/upgrades
Under an invalidation protocol, a (new) writer sends its request to the

directory, which either forwards the request to the pre- vious writer if one exists
(Figure 4a), or inva- lidates multiple readers (Figure 4b). In our case, the new writer
predicts the previous writ- er and sends a direct request to it. Figures 4c, 4d, and 4e
show the sequence of hops for the base three-hop invalidation as well as for cor- rect
prediction and misprediction.

● No prediction (Figure 4c). In the base three-hop invalidation, data from the
old writer directly transfers to the new writer along with read/write permis-
sions. The previous writer returns its acknowledgement to the directory (3b).
This is a three-hop-latency proto- col with an additional overlapping hop (3a

and 3b overlap), which we desig- nate as a (3þ1)-hop protocol.
● Correct prediction (Figure 4d). A direct

request from the new writer arrives at the predicted node. If the predicted
node has read/write privileges, it is the block’s writer. It returns the data to the
requester, passing along its read/write privileges. It also informs the directory

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

54

þ

þ

þ

that it has relinquished its rights to the
new writer and has self-invalidated.
This is a (2 1)-hop protocol because it
overlaps the last two messages. The previ-
ous writer’s acknowledgment to the di-
rectory (message 2b) carries the new
writer’s identity and plays the same role
as acknowledgment (message 3b) in the
no-prediction case.

● Misprediction (Figure 4e). The incor-
rectly routed request bumps-off the
wrong node, which is not the block’s
writer, and is rerouted to the directory.
The penalty in this case is an extra re-
quest message indirection via the
wrong node, resulting in a (4 1)-hop
protocol.

The main idea here is that the previous
writer assumes the directory role, passing
out its read/write privileges. Similarly to the
writer prediction for reads, when the predic-
tion is correct, the predicted node indeed
has write permissions to the cache block and
returns data and read/write privileges to the
requestor. The previous writer also notifies
the directory of the new writer’s identity
and invalidates its local copy. This notifica-
tion from the previous writer to the directory
is the basis for resolving possible races among
(new) writers, some of which might use pre-
diction while others might go directly to
the directory. We carefully checked the writer
prediction’s correctness for writes and upgrades
and have emphasized resolving writer races
safely.

8

Correct writer prediction reduces the mes-
sage count from four messages to three

because it coalesces the two directory-
indirection messages into one direct message
to the writer. In addition to the power benefit
of eliminating a message, there is a perfor-
mance benefit because the critical latency
further drops from three hops to two hops—

hence, a (2 1)-hop protocol. However, a mis-
prediction results in a four-hop, five-message

protocol with negative impact on both
power and performance. A simple calculation
again reveals that a prediction accuracy of
more than 50 percent starts to yield benefits.

Although simple predictor schemes can
achieve an accuracy of 50 percent or greater,

writer prediction is futile in certain

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

55

situations. Writer
prediction in
migratory sharing or
unstructured sharing
cannot, in any useful
sense, be performed
using history
information. In this
case, we could adapt
the directory to
prevent writer
prediction for mi-
gratory data.

9,10
 We

do not use
migratory sharing
classification in our
evaluation to avoid
the increased cost
and complexity and
keep our approach
simple. In this re-
spect, our results
without it are
conservative. This

classification is not the same as the mi-
gratory optimization—that is, collapsing a
read-miss and a write-miss into one

9-11
—

but simply prevents writer prediction in
hopeless cases. The migratory optimization
is orthogonal to our approach and can be
easily incorporated in the same instruction-
based predictor for additional performance
and power benefits.

Implementation
Implementing transparent reads requires

minimal changes in the cores, protocol
engines, and caches.

5
 Protocol logic changes

Figure 4. Writer prediction on writes and upgrades: Four-hop invalidation of

a single writer (a), four-hop invalidation of multiple readers when no writer

exists (b), base three-hop invalidation when there is no prediction (c),

correct prediction (d), and misprediction (e).

4a
Data+ack
R/WI Old W (e)

R/W
W —/I/TRO

4b
ack

3

Misprediction (4+1)-hop

Wrong
2 1 New writer

H

R/WI Old W
Data+R/W

(d)

2a 2b

—/I/TRO
W R/W

1

Correct prediction (2+1)-hop
New

H

R/WI Old W (c)
Data+ack

R/W 3b
Ack 3a

 1
W

—/I/TRO
H

2

No prediction
New

(3+1)-hop

ROI
(b)

ROI
R

3a R

R ROI

W —/I/RO
R/W

(New) writer
 1

Ack 4

Ack

(4+x)-hop Home(dir)

H

2a

(a)

4 data+ack
2 3 data+ack

Old writer W R/WI

New writer
 1

W —/IR/W H

4-hop Home(dir)

—: Miss TRO: Tear-off read only

I: Invalid R/W: Read-write RO: Read only

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

56

Table 2. Benchmarks used in our evaluation.

Benchmark Input

fft 64 K complex doubles

radix 2 M keys

barnes 8 K bodies, 4 time steps

radiosity Room

fmm 8 K particles

volrend Head

cholesky tk29.0

ocean non-contig. 258 × 258 grid

ocean contig. 258 × 258 grid

water-SP 512 molecules, 3 time steps

water-Nsq 512 molecules, 3 time steps

...
MULTICORE: THE VIEW FROM EUROPE

and modifications to MESI DiriNB

12
 or

DASH-like directory protocols are simple.
4

Discarding the TRO copies upon synchroni-
zation requires some support in the caches
that is similar to but simpler than hierarchi-
cal decay counters, which minimally impact
power consumption.

13

Prior work has shown that instruction-
based prediction can efficiently capture the
access behavior of programs and relate it to
a small set of PCs.

11
 This efficiency is due

to the fact that, unlike address prediction,
which is based on data behavior, the behavior
of the code is constant over time and can be
learned quickly.

11,14
 In contrast to other

work
that
aims
to
predi
ct
the
desti
natio
n set
of
read
ers,

1

4
 we

pred
ict
the
writ
er.

Table 1. Simulator configuration.

Parameter Chip configuration

Processor 16 cores

Cores 3 GHz in-order, single-issue, blocking model (Simics)

Block size 64 bytes

Data and instruction 256 Kbytes, 8-way, 3-cycle latency, Pseudo-least

L1 caches recently used (LRU) (32 Kbytes, 64 Kbytes,

256 Kbytes, 512 Kbytes, 1 Mbyte for sensitivity

studies
8,15

)

Shared L2 cache 8-Mbyte NUCA, 16-way, 4 banks, 15-cycle latency

for tag accesses and 30-cycle latency for data

accesses, P-LRU, each L2 bank is connected to

the four edge routers of the 2D mesh network

Memory 4 Gbytes, 256-cycle latency

Interconnection network 2D mesh topology, 2-cycle link latency, 16 bytes

flit size

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

57

The predictor is a small structure indexed and tagged by the PC of instructions
causing misses in the L1. By using just 64 entries (8-way set associative with least-
recently used replacement), we can capture 99 percent of the benefit of a predictor
of any larger size. Each entry holds the predicted writer and a 2-bit saturating
confidence counter. A side buffer holds the miss address and the PC for updating
the predictor when a miss is sat- isfied. We implement this side structure with
minimal cost as part of the L1 MSHRs.

Although the instruction-based predictor works well for instructions causing
read and write misses, its performance for stores that cause upgrade misses lags
behind. The rea- son is that a read miss precedes each upgrade miss. Because
the predictor is updated when misses are satisfied, writer in- formation in this case is
related to the load that caused the read miss. By the time the store that caused
the upgrade miss is updated, the writer information is not avail- able. To solve
this problem, we rely on a simple address-based prediction, which is carried by
the TRO cache blocks. Each TRO copy carries the ID of the last known
writer—that is, the node from which it got the data. The overhead for a 16-
core CMP is just 4 bits per cache line, which is negligible. The performance of
this simple scheme is enough to give stores a prediction accuracy comparable to—
or better than—the loads.

Evaluation
We implemented our protocols using Gems on top of Vitutech Simics

(http:// www.virtutech.com). We configured Simics to simulate a 16-core SPARC
running Solaris 10, and configured Gems/Ruby to model a CMP with a mesh
interconnect. Table 1 shows the simulator parameters and Table 2 shows the
Splash-2 benchmarks with their inputs. As Figure 1 shows, all of the benchmarks
show relatively good speed- ups up to 16 cores, except for radiosity, due to its
small input (larger inputs for radio- sity lead to long simulation times). We use full-
run simulations (from start to comple- tion of the parallel part of the application)
to correctly compute EDP. Relying on a small part of the execution (for
example, a

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

58

fixed number of instructions) cannot yield
reliable EDP results because instruction per
cycle (IPC) is not the correct metric for
CMPs. We concentrate on cache and net-
work EDP because they are critical for scal-
ing the coherence protocol. Individual core
power (which we can compute using partial
Gems/Opal runs) is roughly constant per
benchmark, regardless of the core count
used to run the benchmark. Thus, core
EDP largely follows the speedup curves,
and so is not interesting in our study.

We rely on Orion 2.0 to compute net-
work energy and Cacti 6.5 to compute
cache energy. We used a 45-nanometer pro-
cess technology for both Orion and Cacti.
We derived all process-specific parameters
used by Cacti 6.5 from the ITRS roadmap,
and modeled the caches in Cacti using the
parameters in Table 1. We also modeled
the instruction-based predictor in Cacti as
an 8-way 64-entry cache (2-byte tags and 1-
byte prediction data). Our Cacti simula-
tions reveal that the instruction-based predic-
tor energy per access is 10.06 percent of the
energy per accesses consumed by a 256-
Kbyte L1 cache (12.12 percent of a 32-
Kbyte cache, 1.63 percent of the 8-Mbyte
L2 cache, and 8.2 percent of a router). The
extra power introduced by our instruction-
based predictor is more than suf- ficiently
compensated by reducing the data and

control messages as well as by

100

90

80

70

60

50

40

30

20

10

0

fft radix barnes radiosity fmm volrend cholesky ocean-cont ocean-ncont water-spa water-ns avg

32 Kbytes 64 Kbytes 128 Kbytes 256 Kbytes 512 Kbytes 1,024 Kbytes

Figure 5. Potential benefit from writer prediction. The benefit largely depends on how much cache space is available.

P
e

rc
e

n
t

o
f
 t

im
e

s
 w

ri
te

r
e

x
is

ts

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

59

substituting L2 bank
accesses with L1
accesses. Finally, we
assume that the
network link width
for L1-to-router
communication and
for router-to-router
communication is 16
bytes (the same as
the flit size), while
the network link
width for L2-
directory-to- router
communication is 2
bytes.

Oracle writer prediction
To determine

writer prediction’s
poten- tial, we
explore an oracle
predictor with 100
percent accuracy. Its
coverage gives the
number of times a
writer actually exists
in a local cache and
can supply the data
with a direct transfer
to a requestor. For the
misses not covered by
the oracle predictor,
no writer exists in the
system at the time of
the miss; data must
be fetched by going
to the direc- tory
(L2). The oracle
predictor simply
peeks at the
directory to see who
the writer is (the
node holding the
specific cache line in
exclusive/modified
state) whenever a
pre- diction
opportunity exists.

Figure 5 shows
the potential
benefit across
several cores (from

2 to 16) and for a wide range of L1 cache
sizes (from 32 Kbytes to 1 Mbyte) for the
Splash-2 bench- marks. The potential
benefit is significant in many of the
benchmarks, but varies signifi- cantly
within a benchmark in relation to core
count and cache size. The potential ben- efit
largely depends on the total amount of
cache space available. Increasing either the

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

60

þ

þ

þ

þ

...
MULTICORE: THE VIEW FROM EUROPE

core count or the cache size increases the
total amount of L1 cache space available to
the application. With more cache space,
writers remain longer in the L1 caches and
can satisfy direct requests.

Results
Figure 6 presents the overall results for ex-

ecution time, energy, and EDP (network and
cache) for 11 of the Splash-2 benchmarks for
256-Kbyte L1 caches and realistic writer pre-
diction (comparable results, accounting for
the reduced prediction potential, for 32-
Kbyte L1 caches are available elsewhere

15
).

Each graph shows the percentage reduction
(improvement) in execution time, energy,
and EDP normalized to the base MESI pro-
tocol. For each benchmark we show results
for 2, 4, 8, and 16 cores. In each case, we pres-
ent the results for the TRO protocol, for the
TRO with writer prediction (TRO WP),
and for the TRO with oracle prediction (Or-
acle WP). As the graphs show, the TRO pro-
tocol alone achieves a modest reduction in
execution time over the base protocol—from
0.3 percent (2 cores) to 9.48 percent
(16 cores) on (arithmetic) average over all
benchmarks—while writer prediction yields
a reduction from 2.57 percent (2 cores) to
15.37 percent (16 cores). Both the TRO
and the TRO WP yield significant reduc-
tion in network and cache energy, ranging
from 10.58 percent (2 cores) to 35.88 percent
(16 cores) for TRO and 27.66 percent to 52.8
percent for TRO WP (Figure 6b). This is
the result of eliminating a portion of the over-
all network traffic and reducing L1 misses and
L2 accesses. The reduction in cache and net-
work energy combined with execution time
reduction gives the EDP reduction shown in
Figure 6c. Overall, the reduction in EDP is
8.66 percent (2 cores) to 39.77 percent
(16 cores) for TRO and 17.38 percent to
50.78 percent for TRO WP. These results
contribute to our initial argument for better
EDP scaling.

To gain a better understanding of these
results, especially with respect to individual
benchmarks’ behavior, we also present the
reduction experienced in the network traffic
in Figure 7. Because of space limitations,

we
only
pres
ent
the
resul
ts
for
eight
and
16
cores
. We
place
traffi
c in
thre
e
cate
gorie
s:

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

61

þ

invalidation traffic (invalidations and ac- knowledgments), data messages, and
control messages (requests). According to our previ- ous analysis, the TRO protocol
almost elim- inates the invalidation traffic. This is indeed the case for most
benchmarks. Only cholesky sees just a modest reduction in invalidation traffic. In
this case, although the actual inval- idation messages are sufficiently reduced (up to
75 percent in 16 nodes), those that remain correspond to a relatively large number of
ac- knowledgment messages.

The basic protocol transactions of TRO WP remain invariant with respect to
data traffic compared to the base protocol. TRO copies, however, can be self-
invalidated and refetched even in the absence of intervening writes. This results in
additional data traffic nonextant in the base protocol. Recall that we do not use
any directory classification (that is, for frequently written versus read- mostly
lines) to avoid this. Increased data traffic due to this phenomenon appears in
barnes, radiosity, and cholesky. Even when protocol classification is present,
barnes can- not benefit from tear-off copies.

5
 In many benchmarks (fft, fmm,

volrend, ocean-cont, ocean-ncont, water-spa, and water-ns) we see fewer data
messages. In the base protocol, data are put back to the directory when a writer is
downgraded because there is no ‘‘owner’’ state. In contrast, because we do not
downgrade the writers on TRO reads, we achieve the same benefit as with
having an owner state in addition to a significant re- duction in L1 upgrade
misses—32.06 per- cent on average in 16 cores.

Writer prediction also has a significant ef- fect on the control (request)
messages. The reduction of requests depends on both the correct predictions and
the mispredictions (which introduce additional control mes- sages). In general, the
benchmarks with good accuracy also show a significant de- crease in control
messages. Prediction accu- racy ranges from 91.43 percent in two cores to 73.97
percent in 16 cores, averaged over all benchmarks. Detailed accuracy and coverage
results are available elsewhere.

15
 The combination of the change in the three

message categories (invalidation traffic, data, and control messages) weighted by their
relative frequency in the program actually

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

62

70

60

50

40

30

20

10

0

fft radix barnes radiosity fmm volrend cholesky ocean-cont ocean-ncont water-spa water-ns avg

(a)

100

90

80

70

60

50

40

30

20

10

0

fft radix barnes radiosity fmm volrend cholesky ocean-cont ocean-ncont water-spa water-ns avg

(b)

100

90

80

70

60

50

40

30

20

10

0

(c)

fft radix barnes radiosity fmm volrend cholesky ocean-cont ocean-ncont water-spa water-ns avg

Figure 6. Execution time reduction (a), cache and network energy (b), and EDP reduction (c) normalized to the base MESI

protocol for 256-Kbyte L1 caches.

Tear-off, read only Tear-off, read only and writer prediction Oracle writer prediction

Tear-off, read only Tear-off, read only and writer prediction Oracle writer prediction

Tear-off, read only Tear-off, read only and writer prediction Oracle writer prediction

E
n

e
rg

y
-d

e
la

y
 p

ro
d

u
c
t

re
d

u
c
ti
o

n
 (

%
)

E
n

e
rg

y
 r

e
d

u
c
ti
o

n
 (

%
)

E
x
e

c
u

ti
o

n
 t

im
e

 r
e

d
u

c
ti
o
n

 (
%

)

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

2
P

4
P

8
P

1
6

P

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

63

B

...
MULTICORE: THE VIEW FROM EUROPE

represents the reduction in L2/directory
accesses, which ranges from 34.08 percent
for two nodes to 55.91 percent for 16
nodes (averaged over all benchmarks) and
reaching as high as 78.12 percent for ocean_
cont in 16 nodes.

15
 L2 cache accesses have an

important contribution in the total energy.
Their reduction combined with reduced net-
work traffic constitute the bulk of our energy
savings.

y simply relying on the independence
of tear-off blocks from costly (and

many times complex) directory updates, our
writer prediction approach avoids many of
the problems and much of the complexity
of earlier attempts to graft prediction onto
cache coherence. It thus opens the way to
efficiently incorporate further optimizations

without inordinately complicating the co-
herence protocols. Inspiration for many

optimizations can be drawn from the vast
body of prior work on cache coherence,

spanning hardware caches to software
virtual memory systems. Our future work

concentrates on incorporating such optimi-
zations to further reduce power consumption

and improve network performance.

..

100

90

80

70

60

50

40

30

20

10

0

–10

–20

–30

–40

8P 16P 8P 16P 8P 16P 8P 16P 8P 16P 8P 16P 8P 16P 8P 16P 8P 16P 8P 16P 8P 16P

fft radix barnes radiosity fmm volrend cholesky ocea-cont ocean-ncont water-spa water-ns

Figure 7. Relative traffic reduction (TRO þ WP versus the base MESI protocol) for 256-Kbyte L1 caches.

Invalidations Data messages Control messages

T
ra

ff
ic

 r
e

d
u

c
ti
o

n
 (

%
)

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

64

References

1. M. Hill, ‘‘What is Scalability?’’ Computer Archi-

tecture News, vol. 18, no. 4, 1990, pp. 18-21.

2. J.P. Singh and D. Culler, Parallel Computer Ar-

chitecture: A Hardware/Software Approach,

Morgan-Kaufmann Publishers, 1998.

3. A. Ramirez et al., ‘‘The SARC Architecture,’’

IEEE Micro, vol. 30, no. 5, 2010, pp. 16-29.

4. D. Lenoski et al., ‘‘The Stanford DASH

Multiprocessor,’’ Computer, vol. 25, no. 3,

1992, pp. 63-79.

5. A.R. Lebeck and D. Wood, ‘‘Dynamic Self-

Invalidation: Reducing Coherence Overhead

in Shared-Memory Multiprocessors,’’ Proc.

Int’l Symp. Computer Architecture (ISCA-

22), IEEE Press, 1995, pp. 48-59.

6. K. Gharachorloo et al., ‘‘Programming for

Different Memory Consistency Models,’’

J. Parallel and Distributed Computing,

vol. 15, no. 4, 1992, pp. 399-407.

7. M.E. Acacio et al., ‘‘Owner Prediction for

Accelerating Cache-to-Cache Transfer

Misses in a cc-NUMA Architecture,’’ Proc.

Int’l Conf. Supercomputing (ICS-02), IEEE

Press, 2002, pp. 1-12.

8. S. Kaxiras, G. Keramidas, and I. Oikonomou,

‘‘Power-Efficient Scaling of CMP Directory

Coherence,’’ Proc. Workshop Programm-

ability Issues for Multi-Core Computers,

2009; available at http://multiprog.ac.upc.edu/

multiprog09/resources/proceedings2009.pdf

9. A.L. Cox and R.J. Fowler, ‘‘Adaptive Cache

Coherency for Detecting Migratory Shared

Data,’’ Proc. Int’l Symp. Computer Archi-

tecture (ISCA-20), IEEE Press, 1993,

pp. 98-108.

http://multiprog.ac.upc.edu/

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

65

10. P. Stenströ m, M. Brorsson, and L. Sandberg,

‘‘An Adaptive Cache Coherence Protocol

Optimized for Migratory Sharing,’’ Proc. Int’l

Symp. Computer Architecture (ISCA-20),

IEEE Press, 1993, pp. 109-118.

11. S. Kaxiras and J.R. Goodman, ‘‘Improving

CC-NUMA Performance Using Instruction-

based Prediction,’’ Proc. Int’l Symp. High-

Performance Computer Architecture (HPCA-

5), IEEE Press, 1999, pp. 161-172.

12. A. Agarwal, M. Horowitz, and J. Hennessy,

‘‘An Evaluation of Directory Schemes for

Cache Coherence,’’ Proc. Int’l Symp. Com-

puter Architecture (ISCA-15), IEEE Press,

1988, pp. 280-298.

13. S. Kaxiras, Z. Hu, and M. Martonosi, ‘‘Cache

Decay: Exploiting Generational Behavior to

Reduce Cache Leakage Power,’’ Proc. Int’l

Symp. Computer Architecture (ISCA-28),

IEEE Press, 2001, pp. 240-251.

14. S. Kaxiras and C. Young, ‘‘Coherence Com-

munication Prediction in Shared-Memory

Multiprocessors,’’ Proc. Int’l Symp. High-

Performance Computer Architecture

(HPCA-6), IEEE Press, 2000, pp. 156-167.

15. S. Kaxiras and G. Keramidas, ‘‘Power-

Scalable Coherence, HiPEAC tech. report,’’

http://www.hipeac.net/system/files/Power_

Scalable_Coherence_TR.pdf, 2010.

Stefanos Kaxiras is a professor in the
Information Technology Department at
Uppsala University, Sweden. His research
interests include power-efficient processor/
memory design and modeling of power
consumption and performance in multicore
architectures. Kaxiras has a PhD in computer
science from the University of Wisconsin.

Georgios Keramidas is a postdoctoral fellow
at the Industrial Systems Institute, Greece,
and a visiting assistant professor at the
University of Patras, Greece. His research
interests include computer architecture, in
particular, the design of the memory sub-
system of single core and multicore systems.
Keramidas has a PhD in electrical and
computer engineering from the University
of Patras.

Direct questions and comments about
this article to Georgios Keramidas, ISI,
Patras Science Park S.A., Stadiou str.,
Platani, Patras GR-26504, Greece; keramidas@
ece.upatras.gr.

http://www.hipeac.net/system/files/Power_

