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......To scale application performance 
in the multicore era, we must go beyond 
instruction-level parallelism (ILP) and in- 
stead rely on explicit parallelism. An impor- 
tant issue for advances in this direction is 
ease of parallel programming. To this end, 
the shared-memory programming model 
offers a good starting point. However, we 
cannot ignore the issue of power efficiency. 
Poor power efficiency—increasing power for 
diminishing performance gains—killed the 
development of wider ILP architectures. This 
danger is also visible in multicores— that is, 
when a parallel application experien- ces 
sublinear speedup and/or when its power 
consumption increases faster than the num- 
ber of cores allocated to it. 

Hill describes various notions of scalabil- 
ity.

1
 For multicores, it is useful to think of 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

45 

 

the scalability of a parallel program in 
terms of power performance. In this 
article, we use the energy-delay 
product (EDP) to study the scalability 
of parallel programs. Three forces 
shape a parallel application’s power 
efficiency (EDP): 

 
 

● the application’s performance 
scalabil- ity (speedup), 

● the application’s communication-to- 
computation growth rate, and 
the working set size and how it fits 
in the core caches.

2
 

 

We focus on improving power 
efficiency for parallel applications in a 
shared-memory CMPs. The SARC project 
(http://www. sarc-ip.org) provides the 
framework. Our approach uses tear-off 
cache blocks (blocks that are not 
registered in the directory but self-
invalidate on synchronization) to 
eliminate invalidation traffic, reduce false 
sharing, and upgrade traffic, and writer 
pre- diction to eliminate directory 
indirection and go to the writers 
directly. We thus achieve both power (in 
the network and caches) and performance 
(for reads and writes) benefits. We 
evaluate our approach using Gems and 
show significant improve- ments in EDP 
over a base MESI protocol— 
improvements that increase with core 
count. 

   

● 

http://www/
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Figure 1. Speedup (a), normalized core energy-delay product (EDP) (b), normalized network and cache EDP averaged over 

all Splash-2 benchmarks (c) and normalized network & cache EDP for fft (d), radix (e), and ocean non-cont (f). 
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Energy-delay product scalability 
in shared memory CMPs 

The SARC architecture assumes a hetero- 
geneous multicore processor composed 
of general-purpose cores and application- 
specific accelerators.

3
 General-purpose cores 

have a private cache hierarchy that we call 
level-one (L1) (although it might consist of 
more than one level) and a last-level cache 
before the external memory, called level- 
two (L2). General-purpose parallel programs, 
such as the Splash-2 benchmarks, run on the 
general-purpose cores. All on-chip commu- 
nication is point-to-point messaging via a 
network on chip (NoC). A directory-based 
coherence protocol keeps distributed private 
(L1) caches coherent.

4
 The directory is colo- 

cated with the shared on-chip L2 cache— 
that is, the directory tracks only the on-chip 
cache blocks. 

EDP scalability depends on the behavior of 
core, cache, and network power. Core power, 
at first approximation, is fairly stable per core 

and increases about linearly with the number 
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of cores. This leads 
to poor power 
efficiency if we use 
more cores for 
relatively less speedup. 
Figure 1 shows the 
speedups achieved in 
our simulations of a 
16-core CMP for 
Splash-2 benchmarks 
(we discuss the 
evaluation setup later 
in the article). 
Because core EDP 
can be derived from 
the performance 
scalability and average 
core power, we can 
concentrate instead on 
the more interesting 
problems of the cache 
and network EDP 
scalability: 

 
● Network power 

is an interplay 
between the 
capacity-miss 
traffic at low 
core counts and 
the increased 
coherence- 
communication 
traffic at higher 
core counts. 
Furthermore, 
network power 
is also affected 
by the distances 
the mes- sages 
travel. As we use 
larger networks, 
the energy spent 
per message 
increases. 

● Cache power is 
also directly 
related to 
coherence. A 
significant 
source of ineffi- 
ciency is the 
directory itself—
specifically, the 

directory’s central role in all coher- 
ence operations necessitates costly 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

48 

 

............................................................................................................................................................................................... 
MULTICORE: THE VIEW FROM EUROPE 

 
 

 

 
(in power and latency) indirections 
through it. 

● Directory coherence, due to the large 
number of messages it sends and the 
large number of cache (directory) 
accesses it causes, eventually does not 
scale well in terms of power and perfor- 
mance (EDP). Indeed, as Figure 1 
shows, cache-and-network EDP scal- 
ability suffers significantly as we run 
the Splash-2 benchmarks on an increas- 
ing number of cores. 

 

To address these problems, we combine 
the use of tear-off cache blocks and writer 

prediction. This combination is important 
because tear-off blocks make going to the 
directory optional. This greatly simplifies 
writer prediction, which can be built on 
top of a tear-off protocol practically for 
free: guess a writer, go to it directly; if it is 
indeed the writer, simply create a tear-off 
copy. The combined protocol is minimal 
in its messaging and requires minimal hard- 
ware support over a standard MESI protocol. 

Furthermore, we use frugal (very power- 
efficient) predictors for the writer prediction. 
We use instruction-based prediction with a 

smal
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Figure 2. Basic operations with transparent reads and tear-off copies 

(tear-off, read-only [TRO] protocol). 

RO: Read only R/W: Read/write T-reader: Transparent reader 
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prediction when needed. Our predictors pro- vide the necessary accuracy and 
improve EDP by as much as 82.62 percent in 16 cores. Furthermore, the EDP 
improvement in SARC coherence is not a trade-off be- tween energy and delay, 
but rather an im- provement in both. 

Transparent reads  and tear-off copies 
Transparent reads are reads that do not register in the directory and create a 

tear- off, read-only (TRO)  copy.
5
 The TRO copy is thrown away (self-invalidates) 

at the first synchronization event experienced by the core that issued the 
transparent read. Figure 2 shows an example. In the figure, the node on the left 
transparently reads a clean block (1) by going to the L2/directory. A transparent 
read leaves no trace in the di- rectory but gets a clean cache block in read-only 
mode (RO); its state is designated tear-off or TRO. A writer (on the right of Figure 
2) goes to the directory (2) and obtains the block with read/write permis- sions 
(R/W). The writer cannot invalidate the reader because the latter did not register in 
the directory. However, the transparent reader is bound to throw away the TRO 
block at the first synchronization point (3). The writer, on the other hand, 
registered in the directory, does not throw away its copy (4). The self-invalidated 
reader sends a new transparent read (5), which, after reaching the directory, 
proceeds to fetch the latest value from the writer (6). A second writer (7), 
invalidates the previous one (8) and registers its own ID in the directory. 

With transparent reads, coherence in the traditional sense—that is, sending 
invalida- tions upon a write, is maintained only among writers. We call this writer 
coherence. Writers must still register in the directory so the latest value of the cache 
block can be safely tracked. A new write simply invalidates the previous writer of the 
block (typically, there are no readers registered in the direc- tory). A significant 
difference between our work and prior work

5
 is that the writer does not 

downgrade with a transparent read. This significantly reduces upgrade traf- fic. 
Normal reads still downgrade a writer from read/write permissions to read-only. 
The downgraded copy, however, is not a 
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TRO and is registered in the directory, 
which means that it will be invalidated 
by the next writer. Lastly, because the inval- 
idation protocol is always active underneath 
the transparent read and tear-off mecha- 
nisms, we can freely mix invalidation and 
tear-off copies, simultaneously, in the same 
directory entry. 

Correctness with tear-off cache copies 
requires that programs be written as if 
for a weak-ordered memory system, which 
means that tear-off copies require correctly 
synchronized programs.

5,6
 As long as syn- 

chronization in the program is clearly identi- 
fied and exposed to the hardware (to purge 
the TRO copies), programs run correctly. 
TRO copies are incompatible with data 
races such as those used for flag synchroniza- 
tion (flag synchronization based on ordinary 
reads and writes) because reads might com- 
pletely miss all writes, in the absence of any 
synchronization among them. Banning such 
code practices, however, might ultimately 
lead to safer code. Where needed, replacing 
flag synchronization with semaphore syn- 
chronization corrects the problem. In our 
case, the Splash-2 benchmarks run unmodi- 
fied, without glitch, on our protocol by sim- 
ply making the synchronization primitives 
(atomic instructions and lock releases) visible 
to the hardware for the purpose of self- 
invalidating the TRO copies. 

Transparent reads and tear-off copies have 
both performance and power implications. In 
terms of performance, writes become faster be- 
cause reader invalidation (and its acknowledg- 
ment) is no longer required; in addition, 
upgrade traffic is reduced. When transparent 
reads and tear-off copies are coupled with a 
weakly ordered consistency model, the 
improvement of write performance does not 
contribute significantly to the overall perfor- 
mance. In large part, weak consistency models 
hide write latency,

6
 so its reduction is unim- 

portant in this context. Secondary performance 
benefits come from removing the invalidation 
and upgrade traffic from the network, reducing 
congestion and average message latency. On 
the other hand, significant power benefits 
come from removing much of the invalidation 
traffic as well as upgrade traffic. 

A possible pitfall when using trans- 

parent reads is to needlessly discard at 
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synchronization 
copies that do not 
change (read-mostly 
data). This could 
negatively impact 
both performance 
and power by 
constantly refetching 
such copies after 
synchronization 
events. To guard 
against this, we can 
use the directory to 
classify whether a 
cache block is read-
mostly or fre- quently 
written. TRO copies 
are appropriate for 
frequently written 
lines (because self-in- 
validation would 
replace the frequent 
inva- lidations), 
whereas invalidation 
copies are most 
appropriate for read-
mostly lines be- 
cause they are rarely 
invalidated and can 
stay live in the 
caches for as long as 
needed. In our case, 
the tell-tale sign for 
read-mostly TRO 
copies is that the 
directory sees the 
same nodes 
repeating their 
transparent reads for 
the same line 
without an interven- 
ing write. Lebeck and 
Wood proposed a 
sim- ilar but 
distributed 
adaptation for tear-
off copies based on 
block versioning, in 
which the nodes 
themselves decide 
whether to re- quest 
TRO copies.

5
 We 

implemented our 

adaptation mechanism in the directory and, 
although it adds marginal benefit, it also 
increases the directory’s complexity and 
cost. For this reason, in the rest of this article, 
we omit directory adaptation in the interest 
of clarity. 

 

Writer prediction: Avoiding 
directory indirection 

Although transparent reads and tear-off 
copies reduce the invalidation traffic, another 
significant source of inefficiency remains in di- 
rectory protocols: the indirection through the 
directory. The directory (whether centralized 
or distributed) is a fixed point of reference to 
locate and obtain the latest version of the 
data from the writer or invalidate its sharers. 
It is difficult and rather complex to avoid an in- 
direction via the directory,

7
 which leads to the 

classic three- or four-hop invalidation proto- 
cols, shown in Figures 3a and 3b. 

Our main contribution is in exploiting 
the properties of transparent reads and tear- 
off copies, and, with a simple and minimal 
protocol, go directly to the writers (by pre- 
dicting their identity), skipping the directory 
when possible. In essence, we let the writers 
assume the role of the directory (the central 
role of coherence) but revert back to 
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directory indirection (the safety net) when 
we cannot locate the writers. We can freely 
intermix the TRO and the TRO enhanced 
with writer-prediction with the base invalida- 
tion protocol at any time and for any cache 
block. 

 

Reads 
In directory protocols, a read goes to the 

directory to find the location of the latest ver- 
sion of the data. The last writer then forwards 
the correct data using a three-hop protocol 
(Figure 3b) or sends it back via the directory 
with a four-hop protocol (Figure 3a). TRO 
copies, however, let the reads avoid going to 
the directory altogether. Rather, reads try to 
obtain the data directly from the writer if 
they can locate it. 

We use prediction to locate the current 
writer. Based on the history, a reader sends a di- 
rect request to a predicted writer (Figure 3d). If 
this node has write permissions (read/write) 
for the requested cache block, the prediction 
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Figure 3. Writer prediction aims to avoid the indirection via the directory 

(when possible) and go directly to the writer. Directory indirection protocols 

are either three-hop (a) or four-hop (b), depending on whether the data 

returns to the directory. Writer prediction protocols: no prediction (c); 

correct prediction (d); and misprediction (e). 
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of the data. If the node is in any other state (including knowing nothing about 
the block), it bumps the request to the di- rectory (Figure 3e). From there, the 
request is routed to the correct writer and back to the reader (as in a normal three-
hop proto- col). The penalty for a misprediction is one extra message (indirection 
via the wrong node). 

Avoiding directory indirection for reads is important in two ways. First, reads, in 
con- trast to writes, are performance-critical, meaning a reduction of their latency 
directly reflects on overall performance. Second, di- rectory indirection accounts for 
a significant part of the read traffic. Eliminating it imme- diately impacts network 
power and perfor- mance. Writer prediction yields a two-hop transaction when 
correct, or a four-hop transaction on a misprediction. A simple cal- culation reveals 
that any prediction accuracy over 50 percent yields both performance and power 
benefits. 

 

Writes/upgrades 
Under an invalidation protocol, a (new) writer sends its request to the 

directory, which either forwards the request to the pre- vious writer if one exists 
(Figure 4a), or inva- lidates multiple readers (Figure 4b). In our case, the new writer 
predicts the previous writ- er and sends a direct request to it. Figures 4c, 4d, and 4e 
show the sequence of hops for the base three-hop invalidation as well as for cor- rect 
prediction and misprediction. 

 

● No prediction (Figure 4c). In the base three-hop invalidation, data from the 
old writer directly transfers to the new writer along with read/write permis- 
sions. The previous writer returns its acknowledgement to the directory (3b). 
This is a three-hop-latency proto- col with an additional overlapping hop (3a 

and 3b overlap), which we desig- nate as a (3þ1)-hop protocol. 
● Correct prediction (Figure 4d). A direct 

request from the new writer arrives at the predicted node. If the predicted 
node has read/write privileges, it is the block’s writer. It returns the data to the 
requester, passing along its read/write privileges. It also informs the directory 
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þ 

þ 

þ 

that it has relinquished its rights to the 
new writer and has self-invalidated. 
This is a (2 1)-hop protocol because it 
overlaps the last two messages. The previ- 
ous writer’s acknowledgment to the di- 
rectory (message 2b) carries the new 
writer’s identity and plays the same role 
as acknowledgment (message 3b) in the 
no-prediction case. 

● Misprediction (Figure 4e). The incor- 
rectly routed request bumps-off the 
wrong node, which is not the block’s 
writer, and is rerouted to the directory. 
The penalty in this case is an extra re- 
quest message indirection via the 
wrong node, resulting in a (4 1)-hop 
protocol. 

 

The main idea here is that the previous 
writer assumes the directory role, passing 
out its read/write privileges. Similarly to the 
writer prediction for reads, when the predic- 
tion is correct, the predicted node indeed 
has write permissions to the cache block and 
returns data and read/write privileges to the 
requestor. The previous writer also notifies 
the directory of the new writer’s identity 
and invalidates its local copy. This notifica- 
tion from the previous writer to the directory 
is the basis for resolving possible races among 
(new) writers, some of which might use pre- 
diction while others might go directly to 
the directory. We carefully checked the writer 
prediction’s correctness for writes and upgrades 
and have emphasized resolving writer races 
safely.

8
 

Correct writer prediction reduces the mes- 
sage count from four messages to three 

because it coalesces the two directory- 
indirection messages into one direct message 
to the writer. In addition to the power benefit 
of eliminating a message, there is a perfor- 
mance benefit because the critical latency 
further drops from three hops to two hops— 

hence, a (2 1)-hop protocol. However, a mis- 
prediction results in a four-hop, five-message 

protocol with negative impact on both 
power and performance. A simple calculation 
again reveals that a prediction accuracy of 
more than 50 percent starts to yield benefits. 

Although simple predictor schemes can 
achieve an accuracy of 50 percent or greater, 

writer prediction is futile in certain 
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situations. Writer 
prediction in 
migratory sharing or 
unstructured sharing 
cannot, in any useful 
sense, be performed 
using history 
information. In this 
case, we could adapt 
the directory to 
prevent writer 
prediction for mi- 
gratory data.

9,10
 We 

do not use 
migratory sharing 
classification in our 
evaluation to avoid 
the increased cost 
and complexity and 
keep our approach 
simple. In this re- 
spect, our results 
without it are 
conservative. This 

classification is not the same as the mi- 
gratory optimization—that is, collapsing a 
read-miss and a write-miss into one

9-11
— 

but simply prevents writer prediction in 
hopeless cases. The migratory optimization 
is orthogonal to our approach and can be 
easily incorporated in the same instruction- 
based predictor for additional performance 
and power benefits. 

Implementation 
Implementing transparent reads requires 

minimal changes in the cores, protocol 
engines, and caches.

5
 Protocol logic changes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Writer prediction on writes and upgrades: Four-hop invalidation of 

a single writer (a), four-hop invalidation of multiple readers when no writer 

exists (b), base three-hop invalidation when there is no prediction (c), 

correct prediction (d), and misprediction (e). 
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Table 2. Benchmarks used in our evaluation. 

Benchmark Input 

fft 64 K complex doubles 

radix 2 M keys 

barnes 8 K bodies, 4 time steps 

radiosity Room 

fmm 8 K particles 

volrend Head 

cholesky tk29.0 

ocean non-contig. 258 × 258 grid 

ocean contig. 258 × 258 grid 

water-SP 512 molecules, 3 time steps 

water-Nsq 512 molecules, 3 time steps 

............................................................................................................................................................................................... 
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and modifications to MESI DiriNB

12
 or 

DASH-like directory protocols are simple.
4
 

Discarding the TRO copies upon synchroni- 
zation requires some support in the caches 
that is similar to but simpler than hierarchi- 
cal decay counters, which minimally impact 
power consumption.

13
 

Prior work has shown that instruction- 
based prediction can efficiently capture the 
access behavior of programs and relate it to 
a small set of PCs.

11
 This efficiency is due 

to the fact that, unlike address prediction, 
which is based on data behavior, the behavior 
of the code is constant over time and can be 
learned quickly.

11,14
 In contrast to other 

work 
that 
aims 
to 
predi
ct 
the 
desti
natio
n set 
of 
read
ers,

1

4
 we 

pred
ict 
the 
writ
er. 

Table 1. Simulator configuration. 

Parameter Chip configuration 

Processor 16 cores 

Cores 3 GHz in-order, single-issue, blocking model (Simics) 

Block size 64 bytes 

Data and instruction 256 Kbytes, 8-way, 3-cycle latency, Pseudo-least 

L1 caches  recently used (LRU) (32 Kbytes, 64 Kbytes, 

256 Kbytes, 512 Kbytes, 1 Mbyte for sensitivity 

studies
8,15

) 

Shared L2 cache 8-Mbyte NUCA, 16-way, 4 banks, 15-cycle latency 

for tag accesses and 30-cycle latency for data 

accesses, P-LRU, each L2 bank is connected to 

the four edge routers of the 2D mesh network 

Memory 4 Gbytes, 256-cycle latency 

Interconnection network 2D mesh topology, 2-cycle link latency, 16 bytes 

flit size 
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The predictor is a small structure indexed and tagged by the PC of instructions 
causing misses in the L1. By using just 64 entries (8-way set associative with least-
recently used replacement), we can capture 99 percent of the benefit of a predictor 
of any larger size. Each entry holds the predicted writer and a 2-bit saturating 
confidence counter. A side buffer holds the miss address and the PC for updating 
the predictor when a miss is sat- isfied. We implement this side structure with 
minimal cost as part of the L1 MSHRs. 

Although the instruction-based predictor works well for instructions causing 
read and write misses, its performance for stores that cause upgrade misses lags 
behind. The rea- son is that a read miss precedes each upgrade miss. Because 
the predictor is updated when misses are satisfied, writer in- formation in this case is 
related to the load that caused the read miss. By the time the store that caused 
the upgrade miss is updated, the writer information is not avail- able. To solve 
this problem, we rely on a simple address-based prediction, which is carried by 
the TRO cache blocks. Each TRO copy carries the ID of the last known 
writer—that is, the node from which it got the data. The overhead for a 16-
core CMP is just 4 bits per cache line, which is negligible. The performance of 
this simple scheme is enough to give stores a prediction accuracy comparable to—
or better than—the loads. 

Evaluation 
We implemented our protocols using Gems on top of Vitutech Simics 

(http:// www.virtutech.com). We configured Simics to simulate a 16-core SPARC 
running Solaris 10, and configured Gems/Ruby to model a CMP with a mesh 
interconnect. Table 1 shows the simulator parameters and Table 2 shows the 
Splash-2 benchmarks with their inputs. As Figure 1 shows, all of the benchmarks 
show relatively good speed- ups up to 16 cores, except for radiosity, due to its 
small input (larger inputs for radio- sity lead to long simulation times). We use full-
run simulations (from start to comple- tion of the parallel part of the application) 
to correctly compute EDP. Relying on a small part of the execution (for 
example, a 
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fixed number of instructions) cannot yield 
reliable EDP results because instruction per 
cycle (IPC) is not the correct metric for 
CMPs. We concentrate on cache and net- 
work EDP because they are critical for scal- 
ing the coherence protocol. Individual core 
power (which we can compute using partial 
Gems/Opal runs) is roughly constant per 
benchmark, regardless of the core count 
used to run the benchmark. Thus, core 
EDP largely follows the speedup curves, 
and so is not interesting in our study. 

We rely on Orion 2.0 to compute net- 
work energy and Cacti 6.5 to compute 
cache energy. We used a 45-nanometer pro- 
cess technology for both Orion and Cacti. 
We derived all process-specific parameters 
used by Cacti 6.5 from the ITRS roadmap, 
and modeled the caches in Cacti using the 
parameters in Table 1. We also modeled 
the instruction-based predictor in Cacti as 
an 8-way 64-entry cache (2-byte tags and 1-
byte prediction data). Our Cacti simula- 
tions reveal that the instruction-based predic- 
tor energy per access is 10.06 percent of the 
energy per accesses consumed by a 256- 
Kbyte L1 cache (12.12 percent of a 32-
Kbyte cache, 1.63 percent of the 8-Mbyte 
L2 cache, and 8.2 percent of a router). The 
extra power introduced by our instruction-
based predictor is more than suf- ficiently 
compensated by reducing the data and 

control messages as well as by 
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Figure 5. Potential benefit from writer prediction. The benefit largely depends on how much cache space is available. 
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substituting L2 bank 
accesses with L1 
accesses. Finally, we 
assume that the 
network link width 
for L1-to-router 
communication and 
for router-to-router 
communication is 16 
bytes (the same as 
the flit size), while 
the network link 
width for L2-
directory-to- router 
communication is 2 
bytes. 

 

Oracle writer prediction 
To determine 

writer prediction’s 
poten- tial, we 
explore an oracle 
predictor with 100 
percent accuracy. Its 
coverage gives the 
number of times a 
writer actually exists 
in a local cache and 
can supply the data 
with a direct transfer 
to a requestor. For the 
misses not covered by 
the oracle predictor, 
no writer exists in the 
system at the time of 
the miss; data must 
be fetched by going 
to the direc- tory 
(L2). The oracle 
predictor simply 
peeks at the 
directory to see who 
the writer is (the 
node holding the 
specific cache line in 
exclusive/modified 
state) whenever a 
pre- diction 
opportunity exists. 

Figure 5 shows 
the potential 
benefit across 
several cores (from 

2 to 16) and for a wide range of L1 cache 
sizes (from 32 Kbytes to 1 Mbyte) for the 
Splash-2 bench- marks. The potential 
benefit is significant in many of the 
benchmarks, but varies signifi- cantly 
within a benchmark in relation to core 
count and cache size. The potential ben- efit 
largely depends on the total amount of 
cache space available. Increasing either the 
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core count or the cache size increases the 
total amount of L1 cache space available to 
the application. With more cache space, 
writers remain longer in the L1 caches and 
can satisfy direct requests. 

 

Results 
Figure 6 presents the overall results for ex- 

ecution time, energy, and EDP (network and 
cache) for 11 of the Splash-2 benchmarks for 
256-Kbyte L1 caches and realistic writer pre- 
diction (comparable results, accounting for 
the reduced prediction potential, for 32- 
Kbyte L1 caches are available elsewhere

15
). 

Each graph shows the percentage reduction 
(improvement) in execution time, energy, 
and EDP normalized to the base MESI pro- 
tocol. For each benchmark we show results 
for 2, 4, 8, and 16 cores. In each case, we pres- 
ent the results for the TRO protocol, for the 
TRO with writer prediction (TRO   WP), 
and for the TRO with oracle prediction (Or- 
acle WP). As the graphs show, the TRO pro- 
tocol alone achieves a modest reduction in 
execution time over the base protocol—from 
0.3 percent (2 cores) to 9.48 percent 
(16 cores) on (arithmetic) average over all 
benchmarks—while writer prediction yields 
a reduction from 2.57 percent (2 cores) to 
15.37 percent (16 cores). Both the TRO 
and the TRO WP yield significant reduc- 
tion in network and cache energy, ranging 
from 10.58 percent (2 cores) to 35.88 percent 
(16 cores) for TRO and 27.66 percent to 52.8 
percent for TRO WP (Figure 6b). This is 
the result of eliminating a portion of the over- 
all network traffic and reducing L1 misses and 
L2 accesses. The reduction in cache and net- 
work energy combined with execution time 
reduction gives the EDP reduction shown in 
Figure 6c. Overall, the reduction in EDP is 
8.66 percent (2 cores) to 39.77 percent 
(16 cores) for TRO and 17.38 percent to 
50.78 percent for TRO WP. These results 
contribute to our initial argument for better 
EDP scaling. 

To gain a better understanding of these 
results, especially with respect to individual 
benchmarks’ behavior, we also present the 
reduction experienced in the network traffic 
in Figure 7. Because of space limitations, 

we 
only 
pres
ent 
the 
resul
ts 
for 
eight 
and 
16 
cores
. We 
place 
traffi
c in 
thre
e 
cate
gorie
s: 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

61  

þ 

invalidation traffic (invalidations and ac- knowledgments), data messages, and 
control messages (requests). According to our previ- ous analysis, the TRO protocol 
almost elim- inates the invalidation traffic. This is indeed the case for most 
benchmarks. Only cholesky sees just a modest reduction in invalidation traffic. In 
this case, although the actual inval- idation messages are sufficiently reduced (up to 
75 percent in 16 nodes), those that remain correspond to a relatively large number of 
ac- knowledgment messages. 

The basic protocol transactions of TRO WP remain invariant with respect to 
data traffic compared to the base protocol. TRO copies, however, can be self-
invalidated and refetched even in the absence of intervening writes. This results in 
additional data traffic nonextant in the base protocol. Recall that we do not use 
any directory classification (that is, for frequently written versus read- mostly 
lines) to avoid this. Increased data traffic due to this phenomenon appears in 
barnes, radiosity, and cholesky. Even when protocol classification is present, 
barnes can- not benefit from tear-off copies.

5
 In many benchmarks (fft, fmm, 

volrend, ocean-cont, ocean-ncont, water-spa, and water-ns) we see fewer data 
messages. In the base protocol, data are put back to the directory when a writer is 
downgraded because there is no ‘‘owner’’ state. In contrast, because we do not 
downgrade the writers on TRO reads, we achieve the same benefit as with 
having an owner state in addition to a significant re- duction in L1 upgrade 
misses—32.06 per- cent on average in 16 cores. 

Writer prediction also has a significant ef- fect on the control (request) 
messages. The reduction of requests depends on both the correct predictions and 
the mispredictions (which introduce additional control mes- sages). In general, the 
benchmarks with good accuracy also show a significant de- crease in control 
messages. Prediction accu- racy ranges from 91.43 percent in two cores to 73.97 
percent in 16 cores, averaged over all benchmarks. Detailed accuracy and coverage 
results are available elsewhere.

15
 The combination of the change in the three 

message categories (invalidation traffic, data, and control messages) weighted by their 
relative frequency in the program actually 
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Figure 6. Execution time reduction (a), cache and network energy (b), and EDP reduction (c) normalized to the base MESI 

protocol for 256-Kbyte L1 caches. 

Tear-off, read only Tear-off, read only and writer prediction Oracle writer prediction 

Tear-off, read only Tear-off, read only and writer prediction Oracle writer prediction 

Tear-off, read only Tear-off, read only and writer prediction Oracle writer prediction 

E
n

e
rg

y
-d

e
la

y
 p

ro
d

u
c
t 

re
d

u
c
ti
o

n
 (

%
) 

E
n

e
rg

y
 r

e
d

u
c
ti
o

n
 (

%
) 

E
x
e

c
u

ti
o

n
 t

im
e

 r
e

d
u

c
ti
o
n

 (
%

) 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 

2
P

 

4
P

 

8
P

 

1
6

P
 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

63  

B 

............................................................................................................................................................................................... 
MULTICORE: THE VIEW FROM EUROPE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
represents the reduction in L2/directory 
accesses, which ranges from 34.08 percent 
for two nodes to 55.91 percent for 16 
nodes (averaged over all benchmarks) and 
reaching as high as 78.12 percent for ocean_ 
cont in 16 nodes.

15
 L2 cache accesses have an 

important contribution in the total energy. 
Their reduction combined with reduced net- 
work traffic constitute the bulk of our energy 
savings. 

 
y simply relying on the independence 
of tear-off blocks from costly   (and 

many times complex) directory updates, our 
writer prediction approach avoids many of 
the problems and much of the complexity 
of earlier attempts to graft prediction onto 
cache coherence. It thus opens the way to 
efficiently incorporate further optimizations 

without inordinately complicating the co- 
herence protocols. Inspiration for many 

optimizations can be drawn from the vast 
body of prior work on cache coherence, 

spanning hardware caches to software 
virtual memory systems. Our future work 

concentrates on incorporating such optimi- 
zations to further reduce power consumption 

and improve network performance.  

.................................................................... 
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