
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

34

Scalable Directory-Based Cache Coherence Schemes:

Lowering Memory and Traffic Needs

Dr. Dhaneswar Parida
1
*, Mr.Gyana Prakash Bhuyan

2

1
* Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

dhaneswarparida@thenalanda.com*, gyanprakash@thenalanda.com

Abstract
There is a resurgence of interest in directory-based cache

coherence techniques as multiprocessor systems rise beyond single

bus architectures. To keep track of all processors that are caching a

memory block, these systems rely on a directory. To keep the

caches coherent after a write to that block, point-to-point

invalidation signals are delivered. Using a bit vector per memory

block with one bit for each processor is an easy approach to keep

track of the identities of processors that are caching a memory

block. The overall amount of the directory memory unfortunately

increases as the square of the number of processors, which is

problematic for large machines because the main memory grows

linearly with the number of processors.

In this article, we provide two straightforward methods that

significantly lower directory memory requirements and

invalidation traffic. As a new method of storing directory state

information, we first introduce the coarse vector. While using less

memory than previous limited pointer approaches, this one

generates a lot less in-validation traffic. Second, we suggest sparse

directories, which drastically reduce the amount of memory needed

for directories by associating each entry with many memory

blocks. The Stanford DASH multiprocessor architecture is used to

evaluate the proposed methodologies in the study. Results show

that sparse directories and coarse vectors can reduce storage

requirements by one to two orders of magnitude with only a little

performance hit..

1 Introduction

A critical design issue for shared-memory multiprocessors is the

cache coherence scheme. In contrast to snoopy schemes [2],

directory-based schemes provide an attractive alternative for scal-

able high-performance multiprocessors. In these schemes a direc-

tory keeps track of which processors have cached a given memory

block. When a processor wishes to write into that block, the di-

rectory sends point-to-point messages to processors with a copy,

thus invalidating all cached copies. As the number of processors

is increased, the amount of state kept in the directory increases

accordingly. With a large number of processors, the memory re-

quirements for keeping a full record of all processors caching each

memory block become prohibitive. Earlier studies [15] suggest that

most memory blocks are shared by only a few processors at any

given time, and that the number of blocks shared by a large num-

ber of processors is very small. These observations point towards

directory organizations that are optimized to keep a small number

of pointers per directory entry, but are also able to accommodate a

few blocks with very many pointers.

We propose two methods for lowering invalidation traffic and

directory memory requirements. The first is the coarse vector di-

rectory scheme. In the most common case of a block being shared

between a small number of processors, the directory is kept in the

form of several pointers. Each points to a processor which has

a cached copy. When the number of processors sharing a block

exceeds the number of pointers available, the directory switches

to a different representation. The same memory that was used to

store the pointers is now treated as a coarse bit vector, where each

bit of the state indicates a group of processors. We term this new

directory scheme Dir CV , where i is the number of pointers and r

is the size of the region that each bit in the coarse vector represents.

With all bits set, the equivalent of a broadcast is achieved. While

using the same amount of memory, the proposed scheme is at least

as good as the limited pointer scheme with broadcast—presented

as Dir B in [1].

The second method we propose reduces directory memory re-

quirements by organizing the directory as a cache, instead of having

one directory entry per memory block. Since the total size of main

memory in machines is much larger than that of all cache memory,

at any given time most memory blocks are not cached by any pro-

cessor and the corresponding directory entries are empty. The idea

of a sparse directory that only contains the active entries is thus

appealing. Furthermore, there is no need to have a backing store

for the directory cache. The state of a block can safely be discarded

after invalidation messages have been sent to all processor caches

with a copy of that block. Our scheme of sparse directories brings

down the storage requirements of main-memory-based directories

close to that of cache-based linked list directory schemes such as

the SCI scheme [8]. However, we avoid the longer latencies and

more complicated protocol associated with cache-based directories.

Note that our two proposals are orthogonal. Sparse directories

apply equally well to other directory entry formats as to the coarse

vector scheme.

In this paper we compare the full bit vector scheme and existing

limited pointer schemes with our coarse vector scheme. We also

evaluate the performance of sparse directories. The performance

results were obtained using multiprocessor simulations of four par-

allel applications. The multiprocessor simulator is based on the

Stanford DASH architecture [11]. Our results show that the coarse

vector scheme always does at least as well as all other limited-

pointer schemes and is much more robust in response to different

applications. While some applications cause one or the other direc-

tory scheme to degrade badly, coarse vector performance is always

close to that of the full bit vector scheme. Using sparse directories

adds less than 17% to the traffic while reducing directory memory

overhead by one to two orders of magnitude.

The next section briefly introduces the DASH multiprocessor

architecture currently being developed at Stanford. It will be used

as a base architecture for our studies throughout the paper. The

DASH architecture section is followed by background information

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

35

sent to clusters having cached copies (remote clusters). At the same

time, an ownership reply is returned to the local cluster. This reply

also contains the count of invalidations sent out, which equals the

number of acknowledgement messages to expect. As each of the

invalidations reaches its destination, invalidation acknowledgement

messages are sent to the local cluster. When all acknowledgements

are received by the local cluster, the write is complete.

Figure 1: DASH architecture.

on directory-based cache coherence schemes, with emphasis on the

memory requirements of each scheme. Section 4 introduces the

directory schemes proposed in this paper. Section 5 describes the

experimental environment and the parallel applications used for our

performance evaluation studies. Section 6 presents the results of

these studies. Sections 7 and 8 contain a discussion of the results,

future work, and conclusions.

2 The DASH Architecture

The performance analysis of the different directory schemes de-

pends on the implementation details of a given multiprocessor ar-

chitecture. In this paper we have made our schemes concrete by

evaluating them in the context of the DASH multiprocessor cur-

rently being built at Stanford. This section gives a brief overview

of DASH [11].

The DASH architecture consists of several processing nodes (re-

ferred to as clusters), interconnected by a mesh network (see Fig-

ure 1). Each processing node contains several processors with their

caches, a portion of the global memory and the corresponding di-

rectory memory and controller. Caches within the clusters are kept

consistent using a bus-based snoopy scheme [13]. Inter-cluster con-

sistency is assured with a directory-based cache coherence scheme

[10]. The DASH prototype currently being built will have a total

of 64 processors, arranged in 16 clusters of 4. The prototype im-

plementation uses a full bit vector for each directory entry. With

one state bit per cluster and a single dirty bit, the corresponding

directory memory overhead is 17 bits per 16 byte main memory

block, i.e., 13.3%.

What follows is a brief description of the protocol messages sent

for typical read and write operations. This information is useful

for understanding the message traffic results presented in Section

6. For a read, the cluster from which the read is initiated (local

cluster) sends a message to the cluster which contains the portion of

main memory that holds the block (home cluster). If the directory

determines the block to be clean or shared, it sends the response

to the local cluster. If the block is dirty, the request is sent to the

owning cluster, which replies directly to the original requestor. For

a write, the local cluster again sends a message to the home cluster.

A directory look-up occurs and the appropriate invalidations are

3 Directory Schemes for Cache Coher-

ence

Existing cache coherent multiprocessors are built using bus-based

snoopy coherence protocols [12, 7]. Snoopy cache coherence

schemes rely on the bus as a broadcast medium and the caches

snoop on the bus to keep themselves coherent. Unfortunately, the

bus can only accommodate a small number of processors and such

machines are not scalable. For scalable multiprocessors we re-

quire a general interconnection network with scalable bandwidth,

which makes snooping impossible. Directory-based cache co-

herence schemes [4, 14] offer an attractive alternative. In these

schemes, a directory keeps track of the processors caching each

memory block in the system. This information is then used to se-

lectively send invalidations/updates when a memory block is writ-

ten.

For directory schemes to be successful for scalable multipro-

cessors, they must satisfy two requirements. The first is that the

bandwidth to access directory information must scale linearly with

the number of processors. This can be achieved by distributing the

physical memory and the corresponding directory memory among

the processing nodes and by using a scalable interconnection net-

work [11]. The second requirement is that the hardware overhead

of using a directory scheme must scale linearly with the number

of processors. The critical component of the hardware overhead is

the amount of memory needed to store the directory information.

It is this second aspect of directory schemes that we focus on in

this paper.

Various directory schemes that have been proposed fall into the

following three broad classes: (i) the full bit vector scheme; (ii) lim-

ited pointer schemes; and (iii) cache-based linked-list schemes. We

now examine directory schemes in each of these three classes and

qualitatively discuss their scalability and performance advantages

and disadvantages. Quantitative comparison results are presented

in Section 6.

 Full Bit Vector Scheme (Dir)

This scheme associates a complete bit vector, one bit per processor,

with each block of main memory. The directory also contains a

dirty-bit for each memory block to indicate if some processor has

been given exclusive access to modify that block in its cache. Each

bit indicates whether that memory block is being cached by the

corresponding processor, and thus the directory has full knowledge

of the processors caching a given block. When a block has to

be invalidated, messages are sent to all processors whose caches

have a copy. In terms of message traffic needed to keep the caches

coherent, this is the best that an invalidation-based directory scheme

can do.

Unfortunately, for a multiprocessor with processors, bytes

of main memory per processor and a block size of bytes, the

directory memory requirements are 2 bits, which grows

as the square of the number of processors. This fact makes full

bit vector schemes unacceptable for machines with a very large

P P

••• Directory
Memory

Memory
Remote
Access
Cache

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

P P

••• Directory
Memory

N
e
t
w
o
r
k

Memory
Remote
Access
Cache

Cache

rocessor

Cache

rocessor

Cache

rocessor

Cache

rocessor

•
•
•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

36

number of processors.

Although the asymptotic memory requirements look formidable,

full bit vector directories can be quite attractive for machines with a

moderate number of processors. For example, the prototype of the

Stanford DASH multiprocessor [11] will consist of 64 processors

organized as 16 clusters of 4 processors each. While a snoopy

scheme is used for intra-cluster cache coherence, a full bit vector

directory scheme is used for inter-cluster cache coherence. The

block size is 16 bytes and we need a 16-bit vector per block to keep

track of all the clusters. Thus the overhead of directory memory

as a fraction of the total main memory is 13.3%, which is quite

tolerable for the DASH multiprocessor.

We observe that one way of reducing the overhead of directory

memory is to increase the cache block size. Beyond a certain point,

this is not a very practical approach because increasing the cache

block size can have other undesirable side effects. For example,

increasing the block size increases the chances of false-sharing [6]

and may significantly increase the coherence traffic and degrade the

performance of the machine.

 Limited Pointer Schemes

Our study of parallel applications has shown that for most kinds

of data objects the corresponding memory locations are cached by

only a small number of processors at any given time [15]. One

can exploit this knowledge to reduce directory memory overhead

by restricting each directory entry to a small fixed number of point-

ers, each pointing to a processor caching that memory block. An

important implication of limited pointer schemes is that there must

exist some mechanism to handle blocks that are cached by more

processors than the number of pointers in the directory entry. Sev-

eral alternatives exist to deal with this pointer overflow, and we will

discuss three of them below. Depending on the alternative chosen,

the coherence and data traffic generated may vary greatly.

In the limited pointer schemes we need log 2 bits per pointer,

while only one bit sufficed to point to a processor in the full bit

vector scheme. Thus the full bit vector scheme makes more ef-

fective use of each of the bits. If we ignore the single dirty bit,

the directory memory required for a limited pointer scheme with

pointers is log2 , which grows as log 2

with the number of processors.

 Limited Pointers with Broadcast Scheme (Dir B)

The Dir B scheme [1] solves the pointer overflow problem by

adding a broadcast bit to the state information for each block.

When pointer overflow occurs, the broadcast bit is set. A sub-

sequent write to this block will cause invalidations to be broadcast

to all caches. Some of these invalidation messages will go to pro-

cessors that do not have a copy of the block and thus reduce overall

performance by delaying the completion of writes and by wasting

communication bandwidth.

The Dir B scheme is expected to do poorly if the typical number

of processors sharing a block is just larger than the number of

pointers i. In that case numerous invalidation broadcasts will result,

with most invalidations going to caches that do not have a copy of

the block.

 Limited Pointers without Broadcast Scheme (Dir

NB)

One way to avoid broadcasts is to disallow pointer overflows alto-

gether. In the Dir NB scheme [1], we make room for an additional

requestor by invalidating one of the caches already sharing the

block. In this manner a block can never be present in more than

i caches at any one time, and thus a write can never cause more

than i invalidations.

The most serious degradation in performance with this scheme

occurs when the application has read-only or mostly-read data ob-

jects that are actively shared by a large number of processors. Even

if the data is read-only, a continuous stream of invalidations will

result as the objects are shuttled from one cache to another in an

attempt to share them between more than i caches. Without special

provisions to handle such widely shared data, performance can be

severely degraded (Section 6 presents an example).

 Superset Scheme (Dir X)

Yet another way of dealing with pointer overflow is the superset or

Dir X scheme (our terminology) suggested in [1]. In this scheme,

two pointers are kept per entry. Once the pointers are exhausted,

the same memory is used to keep a single composite pointer. Each

bit of this composite pointer can assume three states: 0, 1, and X—

where X denotes both. When an entry is to be added, its bit pattern

is compared with that of the existing pointer. For each bit that the

patterns disagree, the pointer bit is flipped to the X state.

When a write occurs and invalidations have to be sent out, each

X in the composite pointer is expanded to both the 0 and 1 states.

A set of pointers to processor caches result, which is a superset of

the caches which actually have copies of the block. Unfortunately

the composite pointer representation produces a lot of extraneous

invalidations. In Section 4.1 we will show that the superset scheme

is only marginally better than the broadcast scheme at accurately

capturing the identities of processors caching copies of the block.

 Cache-Based Linked List Schemes

A different way of addressing the scalability problem of full vector

directory schemes is to keep the list of pointers in the processors

caches instead of a directory next to memory [9, 16]. One such

scheme is currently being formalized as the Scalable Coherent In-

terface [8]. Each directory entry is made up of a doubly-linked

list. The head and tail pointer to the list are kept in memory. Each

cache with a copy of the block is one item of the list with a forward

and back pointer to the remainder of the list. When a cache wants

to read a shared item, it simply adds itself to the head of the linked

list. Should a write to a shared block occur, the list is unraveled

one by one as all the copies in the caches are invalidated one after

another.

The advantage of this scheme is that it scales naturally with the

number of processors. As more processors are added, the total

cache space increases and so does the space in which to keep the

directory information. Unfortunately, there are several disadvan-

tages. For one thing, the protocol required to maintain a linked list

for each directory entry is more complicated than the protocol for a

memory-based directory scheme, because directory updates cannot

be performed atomically. Secondly, each write produces a serial

string of invalidations in the linked list scheme, caused by having

to walk through the list, cache-by-cache. In contrast, the memory-

based directory scheme can send invalidation messages as fast as

the network can accept them. Thirdly, while a memory-based direc-

tory can operate at main memory speeds and can thus be made of

cheap and dense DRAM, the linked list needs to be maintained in

expensive high-speed cache memory. The exploration of tradeoffs

between memory-based and cache-based directories is currently an

active area of research. In this paper, however, we only focus on

memory-based directories as used in DASH-like architectures.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

37

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0
0 2 4

6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Sharers

(a) 32 Processors

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

4

0
0 4 8

12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Sharers

(b) 64 Processors

Figure 2: Average invalidation messages sent as a function of the number of sharers.

4 New Proposals

We propose two techniques to reduce memory requirements of di-

rectory schemes without significantly compromising performance

and communication requirements. The first is the coarse vector

scheme, which combines the best features of the limited pointer

and full bit vector schemes. The second technique is the sparse

directory, which uses a cache without a backing store.

 Coarse Vector Scheme (Dir CV)

To overcome the disadvantages of the limited pointer scheme, with-

out losing the advantage of reduced memory requirements, we pro-

pose the coarse vector scheme (Dir CV). In this notation, i is the

number of pointers and r is the size of the region that each bit in the

coarse vector represents. Dir CV is identical to the other limited

pointer schemes when there are no more than i processors sharing

a block. Each of the i pointers stores the identity of a processor

that is caching a copy of the block. However, when pointer over-

flow occurs, the semantics are switched, so that the memory used

for storing the pointers is now used to store a coarse bit vector.

Each bit of this bit vector stands for a group of r processors. The

region size r is determined by the number of directory memory

bits available. While some accuracy is lost over the full bit vector

representation, we are neither forced to throw out entries (as in

Dir NB) nor to go to broadcast immediately (as in Dir B).

Figure 2 makes the different behaviour of the broadcast and

coarse vector schemes apparent. In the graph, we assume that the

limited pointer schemes each have three pointers. The graph shows

the average number of invalidations sent out on a write to a shared

block as the number of processors sharing that block is varied.

For each invalidation event, the sharers were randomly chosen and

the number of invalidations required was recorded. After a very

large number of events, these invalidation figures were averaged

and plotted.

In the ideal case of the full bit vector (stipple line) the number

of invalidations is identical to the number of sharers. For the other

schemes, we do not have full knowledge of who the sharers are,

and extraneous invalidations need to be sent. The areas between

the stipple line of the full bit vector scheme and the lines of the

other schemes represent the number of extraneous invalidations for

that scheme. For the Dir3 B scheme, we go to broadcast as soon as

the three pointers are exhausted. This results in many extraneous

invalidations. The Dir3 X scheme uses a composite pointer once

pointer overflow occurs, and the graph shows that its behaviour

is almost as bad as that of the broadcast scheme. The composite

vector soon contains mostly Xs and is thus close to a broadcast

bit. The coarse vector scheme, on the other hand, retains a rough

idea of which processors have cached copies. It is thus able to

send invalidations to the regions of processors containing cached

copies, without having to resort to broadcast. Hence the number of

extraneous invalidations is much smaller.

The coarse vector scheme also has advantages in multiprogram-

ming environments, where a large machine might be divided be-

tween several users. Each user will have a set of processor regions

assigned to his application. Writes in one user’s processor space

will never cause invalidation messages to be sent to caches of other

users. Even in single application environments we can take advan-

tage of data locality by placing processors that share a given data

set into the same processor region.

 Sparse Directories

Typically the total amount of cache memory in a multiprocessor is

much less than the total amount of main memory. If the directory

state is kept in its entirety, we have one entry for each memory

block. Most blocks will not be cached anywhere and the corre-

sponding directory entries will thus be empty. To reduce such a

waste of memory, we propose the sparse directory. This is a di-

rectory cache, but it needs no back-up store because we can safely

replace an entry of the sparse directory after invalidating all pro-

cessor caches which that entry points to.

As an example, if a given machine has 16 MBytes of main mem-

ory per processor and 256 KBytes of cache memory per processor,

no more than 1/64 or about 1.5% of all directory entries will be

used at any one time. By using a directory cache of suitable size,

we are able to drastically reduce the directory memory. Thus either

the machine cost is lowered, or the designer can choose to spend

the saved memory by making each entry wider. For example, if

the Dir CV scheme were used with a sparse directory, more point-

ers i and smaller regions r would result. The directory cache size

should be chosen to be at least as large as the total number of

cache blocks. An additional factor of 2 or 4 will reduce the proba-

bility of contention over sparse directory entries if memory access

patterns are skewed to load one directory more heavily than the

others. This contention occurs when several memory blocks map-

ping to the same directory entry exist in processor caches and thus

Dir 3 B

Dir 3 CV 2

Dir 32

| | | | | | | | | | | | | | | | |

Dir 3 B

Dir 3 X

Dir 3 CV 4

Dir 64

| | | | | | | | | | | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

N
u

m
b

e
r

o
f

In
v

a
li

d
a

ti
o

n
s

N
u

m
b

e
r

o
f

In
v

a
li

d
a

ti
o

n
s

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

38

Table 1: Sample machine configurations.

number of
clusters

number of
processors

total main
memory space

(MBytes)

total processor
cache space

(MBytes)

block
size

(Bytes)

directory
scheme

directory
overhead

16 64 1024 16 16 Dir16 13.3%

64 256 4096 64 16 sparse Dir64 13.1%

256 1024 16384 256 16 sparse Dir8 CV4 13.3%

keep knocking each other out of the sparse directory. Similar rea-

soning also provides a motivation for making the sparse directory

set-associative. Since sparse directories contain a large fraction of

main memory blocks, tags need only be a few bits wide. Sparse

directories are expected to do particularly well with a DASH-style

architecture. In DASH, no directory entries are used if data from a

given memory module is cached only by processors in that cluster.

Since we expect processes to allocate their non-shared data from

memory on the same cluster, no directory entries will be used for

such data. Furthermore with increasing locality in programs, fewer

data items will be remotely allocated and thus fewer directory en-

tries will be needed.

The ratio of main memory blocks to directory entries is called the

sparsity of the directory. Thus if the directory only contains 1/16 as

many entries as there are main memory blocks, it has sparsity 16.

Table 1 shows some possible directory configurations for machines

of different sizes. For these machines, 16 MBytes of main memory

and 256 KBytes of cache were allocated per processor. A directory

memory overhead of around 13% has been allowed throughout.

Processors have been clustered into processing nodes of 4—similar

to DASH. The first line of the table is close to the DASH prototype

configuration. There are 64 processors arranged as 16 clusters of

4 processors. For this machine, the full bit vector scheme Dir 16 is

easily feasible. As the machine is scaled to 256 processors, we keep

the directory memory overhead at the same level by switching to

sparse directories. The sparse directories contain entries for 1/4 of

the main memory blocks (sparsity 4). As we shall see in Section 6,

even much sparser directories still perform very well. For the 1024

processor machine, the directory memory overhead is kept constant

and the entry size is kept manageable by using a coarse vector

scheme (Dir8 CV4) in addition to using a directory with sparsity 4.

Note that this is achieved without having to resort to a larger cache

block size.

5 Evaluation Methodology

We evaluated the directory schemes discussed in the previous sec-

tions using an event-driven simulator of the Stanford DASH archi-

tecture. Besides studying overall execution time of various appli-

cations, we also looked at the amount and type of message traffic

produced by the different directory schemes.

Our simulations utilized Tango [5] to generate multiprocessor

references. Tango allows a parallel application to be executed on

a uniprocessor while keeping the correct global event interleaving

intact. Global events are references to shared data and synchroniza-

tion events such as lock and unlock requests. Tango can be used

to generate multiprocessor reference traces, or it can be coupled

with a memory system simulator to yield accurate multiprocessor

simulations. In the latter case the memory system simulator re-

turns timing information to the reference generator, thus preserving

a valid interleaving of references. We used this second method for

our simulations.

Our study uses four benchmark applications derived from four

different application domains. LU comes from the numerical do-

main and computes the L-U factorization of a matrix. DWF is

from the medical domain and is a string matching program used

to search gene databases. MP3D comes from aeronautics. It is a 3-

dimensional particle simulator used to study airflow in the upper

atmosphere. Finally, LocusRoute is a commercial quality standard

cell routing tool from the VLSI-CAD domain.

Table 2: General application characteristics.

Application

shared

refs

(mill)

shared

reads

(mill)

shared

writes

(mill)

sync

ops

(thou)

shared

space

(MBytes)
LU 8.9 6.0 2.9 13 0.65

DWF 17.5 16.2 1.0 277 3.89

MP3D 13.5 8.8 4.7 1 3.46

LocusRoute 21.3 20.2 1.1 24 0.72

Table 2 presents some general data about the applications. It

shows the total number of shared references in the application run

and the breakdown into reads and writes. Shared references are

defined as references to the globally shared data sections in the

applications. The number of shared references varied slightly from

run to run for the non-deterministic applications (LocusRoute and

MP3D). We show the values for the full cache, non-sparse, full bit

vector runs. The table also gives the amount of shared data touched

during execution, which is an estimate of the data set size of the

program.

All runs were done with 32 processors and a cache block size of

16 bytes. We did not use more processors because currently few

of our applications achieve good speedup beyond 32 processors.

For our evaluation studies, we assumed that a directory memory

overhead around 13% was tolerable, which allowed us about 17

bits of directory memory per entry. This restricts the limited pointer

schemes to three pointers and the coarse vector scheme to regions

of size two. The schemes examined in this study are thus Dir 3 CV2,

Dir3 B and Dir3 NB. We also used Dir32 , the full bit vector scheme,

for comparison purposes. Once sparse directories are introduced,

the overhead naturally drops dramatically—by one to two orders

of magnitude, depending on sparsity. For example, a full bit vector

directory with sparsity 64 requires 32 bits to keep track of the

processor caches, 1 dirty bit, and 6 bits of tag. Instead of 33 bits

per 16-byte block we now have 39 bits for every 64 blocks, a

savings factor of 54.

The DASH simulator is configured with parameters that corre-

spond to those of the DASH prototype hardware. The processors

have 64 KByte primary and 256 KByte secondary caches. Local

bus requests take on the order of 23 processor cycles. Remote

requests involving two clusters take about 60 cycles and remote

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

39

90

80

Number of invalidation events: 0.26 million
Average invalidations per event: 0.98

70

60

50

43

40 37

30

20

10
10

5
3 1

0
.7 .3 .2 .1 .0

90

80

Number of invalidation events: 0.26 million
Average invalidations per event: 3.90

70

60

50

41
40 37

30

20

11
10

10

0
.4 .0 .1

|

|
|

|
|

P
e
rc

e
n

ta
g

e
 o

f
In

v
a
li

d
a

ti
o

n
 E

v
e

n
ts

P

e
rc

e
n

ta
g

e
 o

f
In

v
a
li

d
a

ti
o

n
 E

v
e

n
ts

 100 100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Invalidations

Figure 3: Invalidation distribution, LocusRoute, Dir 32.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Invalidations

Figure 5: Invalidation distribution, LocusRoute, Dir 3B.

100

90

80

Number of invalidation events: 0.42 million
Average invalidations per event: 0.88

100

90

80

Number of invalidation events: 0.26 million
Average invalidations per event: 1.41

70 70

61
60 60

50

40

30 26

20

10

0

12

.9 .0

50

43

40 37

30

20

10

0

9

.6 .1 .9 .7
4

.7 2 .3 .8 .2 .3 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Invalidations

Figure 4: Invalidation distribution, LocusRoute, Dir 3NB.

requests with three clusters have a latency of about 80 processor

cycles. In the simulator, main memory is evenly distributed across

all clusters and allocated to the clusters using a round-robin scheme.

The following messages classes are used by the simulator:

Request messages are sent by the caches to request data or

ownership.

Reply messages are sent by the directories to grant ownership

and/or send data.

Invalidation messages are sent by the directories to invalidate

a block.

Acknowledgement messages are sent by caches in response

to invalidations.

The simulator also collects statistics on the distribution of the

number of invalidations that have to be sent for each write request.

The invalidation distribution helps explain the behaviour of the

different directory schemes.

6 Simulation Results

The results presented in this section are subdivided as follows.

The first subsection gives invalidation distributions for the differ-

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Invalidations

Figure 6: Invalidation distribution, LocusRoute, Dir 3CV2.

ent directory schemes. These impart an intuitive feel for how the

different schemes behave and discusses their advantages and dis-

advantages. The next two subsections present the results of our

main study. The first one contrasts the performance of our coarse

vector scheme with that of other limited-pointer schemes. The sec-

ond subsection presents results regarding the effectiveness of sparse

directories.

 Invalidation Distributions

Figures 3-6 give the invalidation distributions of shared data for

the LocusRoute application. We do not present results for other

applications for space reasons. Also, the LocusRoute distributions

illustrate the trends of the different schemes well. In Figure 3 we

see the distribution for the full bit vector scheme (Dir32) which is

the intrinsic invalidation distribution and is the best that can be

achieved. In the case of the Dir32 scheme, only writes that miss

or hit a clean block are invalidation events. We note that most

writes cause very few invalidations, but that there are also some

writes that cause a large number of invalidations. The number of

invalidation events is 0.26 million and each event on average causes

0.98 invalidations for a total of 0.25 million invalidations.

Figure 4 shows the invalidation distribution for Dir3 NB. Since
no broadcasts are allowed, no more than three caches can share a

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

P
e
rc

e
n

ta
g

e
 o

f
In

v
a
li

d
a

ti
o

n
 E

v
e

n
ts

P

e
rc

e
n

ta
g

e
 o

f
In

v
a
li

d
a

ti
o

n
 E

v
e

n
ts

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

40

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
| | | | |

|
|

|
|

|
|

N
o

rm
a
li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e
 a

n
d

 T
ra

ff
ic

 320

300

280

260

240

220

200

180

160

140

120

100

exec. time

100.0

invals + acks
replies
requests

100.1 100.6

141.8

310.7

141.3

82.2

300

280

260

240

220

200

180

160

140

120

100

80 29.8

60

40

20

0

29.9 30.3

32.6

37.7

80

60

87.1 40

20

0
Full Vector Coarse Vector Broadcast Non Broadcast

Figure 7: Performance for LU.

Full Vector Coarse Vector Broadcast Non Broadcast

Figure 9: Performance for MP3D.

320

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

Full Vector Coarse Vector Broadcast Non Broadcast

Figure 8: Performance for DWF.

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

Full Vector Coarse Vector Broadcast Non Broadcast

Figure 10: Performance for LocusRoute.

given block at any one time. This also means that we never see

more than three invalidations per write. Unfortunately, there are

also many new single invalidations, caused by replacements when

a block wants to be shared by more than three caches. For Dir 3 NB

it is possible for reads to cause invalidations, and this is why the

number of invalidation events is so much larger. Although the

average number of invalidations per event has decreased to 0.88,

the total number of invalidations has increased to 0.37 million.

The distribution for Dir3 B is shown in Figure 5. We see that

the number of smaller invalidations goes back to the level seen for

the full vector scheme. However, any writes that caused more than

three invalidations in the full vector scheme now have to broadcast

invalidations. For most broadcasts, 30 clusters have to be invali-

dated, since the home cluster and the new owning cluster do not

require an invalidation. This serves to drive the average invalida-

tions per event up to 3.9 and the total to 1.01 million invalidations.

In the Dir3 CV2 scheme, shown in Figure 6, we are able to re-

spond to the larger invalidations without resorting to broadcast. The

peaks at odd numbers of invalidations are caused by the granular-

ity of the bit vector. Also note the absence of the large peak of

invalidations at the right edge that was present for the broadcast

scheme. There are an average of 1.41 invalidations per event and

0.36 million total invalidations.

In conclusion, we see that the both the broadcast and non-

broadcast schemes can cause invalidation traffic to increase. In

the case of the broadcast scheme this increase is due to the broad-

cast invalidations, which can be relatively frequent if there are only

a small number of pointers. For the non-broadcast scheme, the ex-

tra invalidations are caused by replacing entries when more caches

are sharing a block than there are pointers available. The coarse

vector scheme strikes a good balance by avoiding both of these

drawbacks and is thus able to achieve performance closer to the

full bit vector scheme.

 Performance of Different Directory

Schemes

Figures 7-10 show the performance achieved and data/coherence

messages produced by the different directory schemes for each of

the four applications. All runs use 32 processors, 64 KByte pri-

mary and 256 KByte secondary caches, and a cache block size

of 16 bytes. The total number of messages is broken down

into requests (which include writebacks), replies, and invalida-

tion+acknowledgement messages.

Observe that the number of request and reply messages is about

the same for the first three schemes (Dir , Dir CV and Dir B)

for a given application. This is expected since all three schemes

have similar request and reply behaviour. Dir CV and Dir B oc-

exec. time invals + acks
replies
requests

174.8

94.3 120.2
112.0 108.8

100.0 100.0 100.5

24.0

100.1 34.8
34.7

36.5 37.1 37.3 41.1

39.5 40.2 43.3 44.3

exec. time invals + acks
replies
requests

148.2

119.4 39.1

100.0 100.0 100.4 100.4 101.3 101.0
12.0 12.2 12.8

52.6

42.0 42.0 42.0

46.0 46.1 46.2
56.5

exec. time invals + acks
replies
requests

100.0 100.0 100.0 100.1 100.1 100.3 100.4 102.6

11.7 11.8 11.9 13.2

39.5 39.5 39.5 40.1

49.3

48.8

48.8

48.8

37.6

37.6

32.5 32.5

100.0 100.0 100.1

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

| | | | |
|

|
|

|
|

N
o

rm
a
li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e
 a

n
d

 T
ra

ff
ic

N

o
rm

a
li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e
 a

n
d

 T
ra

ff
ic

N
o

rm
a
li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e
 a

n
d

 T
ra

ff
ic

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

41

casionally send out extraneous invalidations, but that is the only

difference compared to the full bit vector scheme. For Dir NB, on

the other hand, invalidations sometimes have to be sent even for

read requests, when pointer overflow occurs. These invalidations

can later cause additional read misses with the associated increase

in request and reply messages.

Let us now look at each of the applications individually and

discuss the results. LU exhibits the problem discussed in the pre-

vious paragraph. In Figure 7, we see a greatly increased number of

request and reply messages as well as a very large number of in-

validation and acknowledgement messages for the Dir NB scheme.

In LU each matrix column is read by all processors just after the

pivot step. This data is actively shared between many processors

and Dir NB does very poorly.

Read-shared data is also the cause of the poorer performance

of Dir NB for DWF. The pattern and library arrays are constantly

read by all the processes during the run. The other schemes are

virtually indistinguishable.

In MP3D (Figure 9) most of the data is shared between just

one or two processors at any given time. This sharing pattern

causes an invalidation distribution that all schemes can handle well.

The coarse vector and broadcast schemes show almost no increase

in execution time or message traffic, and even the non-broadcast

scheme takes only 0.4% longer to run.

LocusRoute (Figure 10) is interesting in that it is the only appli-

cation in which the Dir NB scheme outperforms Dir B. The central

data structure of LocusRoute is shared amongst several processors

working on the same geographical region. Whenever the number

of sharers exceeds the number of pointers in Dir B, a broadcast

results on a write. The Dir NB scheme does better with this kind

of object, because the invalidations due to pointer overflow often

do not cause re-reads.

Throughout this section the message traffic numbers diverge

more than the execution times for the various schemes. Since we

simulate a 32 cluster multiprocessor with 32 processors, there is

only one processor per cluster. The local cluster bus is thus under-

utilized. In a real DASH system, with four processors to a cluster,

the cluster bus will be much busier. We consequently expect the

performance degradation due to an increased number of messages

to be larger than shown here.

Comparing the performance of the different schemes for the var-

ious applications, we see that the Dir NB does much worse than

the other schemes for most applications. Only in LocusRoute does

it perform better than one of the other schemes. Secondly, while

we expect the Dir CV scheme to always perform as well as the

broadcast scheme, we see that it can do significantly better for some

applications. Finally, we note that the coarse bit vector scheme

sends very few extraneous messages. For the worst case applica-

tion (LocusRoute) Dir CV only sends about 12% more messages

than the ideal full bit vector scheme.

 Performance of Sparse Directories

The method used for evaluating sparse directories was very similar

to that used to evaluate the different directory schemes. There were

two key differences. Firstly, the simulator was configured to use a

sparse directory instead of keeping a complete directory. Secondly,

we used scaled processor caches to achieve a more realistic size

relationship of the sparse directories and processor caches. The

slow speed of the simulator limited us to relatively small application

data sets. As a result, if we had used the regular 256 KBytes of

cache per processor, the whole data set would have fit into the

caches. In such a case we would have been unable to experiment

with sparse directories larger than the processor caches but smaller

than the total memory blocks in the system. Instead, the caches

were scaled to keep the ratio of data set size to cache size of our

runs similar to that of data set size to cache size for a full blown

application problem on a real DASH multiprocessor. For example,

for DWF a full blown problem on a 64-processor DASH would

occupy all of the 1 Gbyte of main memory (see Table 1). This

is 64 times the total cache space. In our simulation, the data set

size was 3.9 MBytes. So to preserve the data set to cache ratio,

the total cache space for our 32-processor simulation was reduced

to 64 KBytes, which is 2 KBytes per processor. We experimented

with sparse directories that have entries from one to four times the

total number of cache lines in the system (shown as size factor 1

to 4 in the graphs).

When an entry needs to be allocated in the sparse directory, we

first look to see whether the slot it maps to is empty. If so, it is

filled. Otherwise we have to replace an existing entry. Invalidations

are sent out and the now empty slot is filled. Empty slots are also

created when a processor cache replaces and writes back a dirty

line.

 Effect of Sparsity

Figures 11-12 show the effect of directory sparsity on performance.

We chose to present results for LU and DWF only. The results for

MP3D were very similar to those of DWF, so for lack of space

we omit them here. For LocusRoute, even for full-scale runs the

data set is expected to be small enough that sparse directories will

perform as well as non-sparse directories. So again we omit the

results in this subsection.

In Figures 11 and 12 we show execution times for LU and DWF

as the directory sparsity is varied. We consider the cases where

the number of directory entries in the system is a factor of 1, 2,

or 4 times the total number of cache blocks in the system. For

these runs we used sparse directories of associativity 4 and use a

random replacement policy (see below). The results suggest that

even directories with the same size as the processor caches perform

well. The worst case application (LU) shows only a 10.4% increase

in execution time when going from a non-sparse, full bit vector

directory to a sparse directory equal in size to the processor caches.

When the directory size is increased to 2 or 4 times the cache size,

the performance degradation of sparse directories is very small.

160

150

140

130

120

110

100

90

80
Non-sparse 4 2 1

Size Factor

Figure 11: Sparse directory performance for LU.

For the size factor 1 directory in LU we see a large performance

difference between the coarse vector and the broadcast schemes.

full bit vector
coarse vector
broadcast

154.9

117.0

110.4

106.1

102.2 102.4
100.0 99.8 99.8 99.8

|
|

|
|

|
|

|
|

|

N
o

rm
a
li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

42

130

120

110

100

directory associativity and replacement policy. The full bit vector

scheme was used in these studies. Figure 13 shows message traffic

numbers for associativities of 1, 2 and 4 with directory size factors

1, 2 and 4. We show traffic numbers because they show the trends

better than the execution time results. For each of the size factors,

associativity 4 is equal to or slightly better than associativity 2,

which in turn is better than direct-mapped by a larger margin. The

benefits from set-associativity seem to be small, but we do expect

associativity to make sparse directories more robust to different

application behaviours.

90

80

Non-sparse 4 2 1

Size Factor

200

180

160

140

Figure 12: Sparse directory performance for DWF.

In LU, the pivot column is shared between all processors. When

directory replacements are more frequent, as is the case for very

sparse directories, only some of the processes may get a chance

to access this data between replacements. When the replacement

does occur, enough sharers exist to cause a broadcast for the Dir B

scheme while the Dir CV only needs to send a few invalidations.

For DWF the performance is fairly flat across schemes and size

factors. The performance does not vary much from scheme to

scheme because the invalidation behaviour of DWF is handled

equally well by all schemes. The performance is flat across size

factors because DWF is a wave-front algorithm that has a relatively

small working set at any moment in time. This ensures that even

very sparse directories do not suffer from excessive replacements.

 Effect of Associativity and Replacement Policy

Since a sparse directory has fewer entries than main memory has

blocks, it is possible for several active blocks to map to the same

directory entry. While a set-associative sparse directory can handle

this situation, entries in a direct mapped sparse directory would

keep bumping each other out, leading to poor directory perfor-

mance.

200

180

160

140

120

100

80

60

40

20

0

Associativity 4 2 1 4 2 1 4 2 1

Size Factor 4 2 1

Figure 13: Effect of associativity in sparse directory (LU).

We used LU as a sample application to study the effect of sparse

120

100

80

60

40

20

0

Repl.Policy LRU Rand LRA LRU Rand LRA LRU Rand LRA

Size Factor 4 2 1

Figure 14: Effect of replacement policies in sparse directory
(LU).

For set-associative directories, there is a choice of replacement

policies. We explored random, least-recently-used (LRU) and least-

recently-allocated (LRA) schemes. LRU keeps the different sets in

each entry ordered by time of access and replaces the least recently

used one. LRA only keeps track of the allocation time of each

set in the entry and replaces the one that was allocated first. The

results for an LU run using a sparse directory with set-associativity

4 and a full bit vector scheme are shown in Figure 14. LRU is

the most difficult to implement, and also performs the best. Even

though random is the easiest to implement in hardware, it actually

does better than LRA. With LRA the possibility of replacing entries

that were allocated early, yet are used frequently exists. This soon

leads to more replacements when the frequently used entries are

accessed again.

7 Discussion

The question arises whether our proposals introduce additional

complexities into the architecture. The answer is very few. The

coarse vector scheme does not require any modification to the pro-

tocol used for the full bit vector scheme. It merely ends up sending

some extraneous invalidations. For sparse directories, on the other

hand, some protocol modification is required. When an entry is

being replaced in the sparse directory, and is thus effectively re-

moved from the system, we have to invalidate all copies of the

corresponding memory block cached in processor caches. Some

entity has to keep track of when all the acknowledgements for

these invalidations have been received. Such an entity must al-

ready exist in systems that implement weak consistency, in order

to keep track of outstanding invalidations. In DASH, we have the

Remote Access Cache (RAC). When a block is to be replaced in

the sparse directory, the RAC allocates an entry for that block and

invalidations are sent out to all cached copies. The RAC receives

full bit vector
coarse vector
broadcast

104.2
102.9

101.5 101.9
100.0 100.3 100.6 101.4 101.3 101.5

invals + acks
replies
requests

124.6 124.6 127.0

100.0 100.7
105.0 106.0 107.8 110.6

invals + acks
replies
requests

121.6 124.6 127.8

100.0 100.0 100.2
103.5 106.0 108.6

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

N
o

rm
a
li
z
e
d

 T
ra

ff
ic

N

o
rm

a
li
z
e
d

 E
x
e

c
u

ti
o

n
 T

im
e

N
o

rm
a
li
z
e
d

 T
ra

ff
ic

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

43

the acknowledgement messages sent in response to these invalida-

tions. The operation is complete when all acknowledgements have

been received.

Another hardware issue concerns synchronization. In DASH,

the directory bit vectors are also used to keep track of processors

queued for a lock. In the case of the full bit vector we have

enough space to keep track of all nodes. Consequently, when a

lock is released, it is granted to exactly one of the waiting nodes.

Once we switch to a coarse vector scheme, that is no longer the

case. We are only able to keep track of which processor regions

are queued for a lock. When the lock is released, and we wish to

grant it to another node, we have to release all processors in that

region and let them try to regain the lock. While this mechanism

is slightly less efficient, it still avoids having to release all waiting

processors and causing a hot spot when they all try to obtain the

lock.

There are many other techniques that can be used to reduce the

memory requirements of directory-based cache coherence schemes.

For example, as suggested in [3], we can associate small directory

entries with each memory block and allow these to overflow into a

small cache of much wider entries. Similarly, we can make multiple

memory blocks share one wide entry. We plan to evaluate some of

these alternative schemes in the future.

8 Conclusions

We have presented two techniques for reducing the memory

overhead and data/coherence traffic of directory cache coherence

schemes—the coarse vector scheme and sparse directory scheme.

The performance of the new schemes was analysed and compared

to existing directory schemes. Our results show that the savings

achieved in memory overhead and the traffic reduction are sig-

nificant. Depending on the application, the coarse vector scheme

produces up to 8% less memory message traffic than the next best

limited pointer scheme and several factors less than the worst lim-

ited pointer scheme. The coarse vector scheme is also more robust

than the other limited pointer schemes—its performance is always

closest to the full bit vector scheme. While sparse directories add

up to 17% to the memory coherence traffic, they can significantly

reduce the directory memory overhead—by one to two orders of

magnitude, depending on sparsity. We believe that a combination

of the two techniques presented will allow machines to be scaled to

hundreds of processors while keeping the directory memory over-

head reasonable.

References

[1] Anant Agarwal, Richard Simoni, John Hennessy, and Mark

Horowitz. An Evaluation of Directory Schemes for Cache

Coherence. In 15th International Symposium on Computer

Architecture, 1988.

[2] James Archibald and Jean-Loup Baer. Cache Coherence

Protocols: Evaluation Using a Multiprocessor Simulation

Model. ACM Transactions on Computer Systems, 4(4):273–

298, 1986.

[3] James K. Archibald. The Cache Coherence Problem in

Shared-Memory Multiprocessors. PhD thesis, Department of

Computer Science, University of Washington, February 1987.

[4] M. Censier and P. Feautier. A New Solution to Coherence

Problems in Multicache Systems. IEEE Transactions on Com-

puters, C-27(12):1112–1118, December 1978.

[5] H. Davis, S. Goldschmidt, and J. Hennessy. Tango: A Multi-

processor Simulation and Tracing System. Stanford Technical

Report – in preparation, 1989.

[6] S. Eggers and R. Katz. The Effect of Sharing on the Cache

and Bus Performance of Parallel Programs. In Proceedings of

the Third International Conference on Architectural Support

for Programming Languages and Operating Systems, pages

257–270, May 1989.

[7] Encore Computer Corporation. Multimax Technical Summary,

1986.

[8] P1596 Working Group. P1596/Part IIIA - SCI Cache Co-

herence Overview. Technical Report Revision 0.33, IEEE

Computer Society, November 1989.

[9] Tom Knight, March 1987. Talk at Stanford Computer Systems

Laboratory.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Proto-

col for the DASH Multiprocessor. In Proceedings of 17th

International Symposium on Computer Architecture, 1990.

[11] Dan Lenoski, James Laudon, Kourosh Gharachorloo, Anoop

Gupta, John Hennessy, Mark Horowitz, and Monica Lam. De-

sign of Scalable Shared-Memory Multiprocessors: The DASH

Approach. In Proceedings of COMPCON’90, pages 62–67,

1990.

[12] Tom Lovett and Shreekant Thakkar. The Symmetry Multipro-

cessor System. In Proceedings of the International Conference

on Supercomputing, pages 303–310, 1988.

[13] M. Papamarcos and J. Patel. A low Overhead Coherence

Solution for Multiprocessors with private Cache Memories.

In Proceedings of 11th International Symposium on Computer

Architecture, pages 348–354, 1984.

[14] C. K. Tang. Cache Design in the Tightly Coupled Multipro-

cessor System. In AFIPS Conference Proceedings, National

Computer Conference, NY, NY, pages 749–753, June 1976.

[15] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache

Invalidation Patterns in Multiprocessors. In Proceedings of

the Third International Conference on Architectural Support

for Programming Languages and Operating Systems, pages

243–256, April 1989.

[16] John Willis. Cache Coherence in Systems with Parallel Com-

munication Channels & Many Processors. Technical Report

TR-88-013, Philips Laboratories – Briarcliff, March 1988.

