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A  B  S  T  R  A  C T 

 

Artificial intelligence (AI) and machine learning are advancing quickly, which has renewed 

interest in their potential applications in power systems for cutting-edge control methods that 

support the integration of higher levels of renewable generation and address rising levels of 

uncertainty and variability. The most important new safety hazards and issues that arise when 

depending on learning for control in electric grid operations are discussed in this study along 

with these new applications. We build on recent taxonomical work in AI safety and focus on four 

concrete safety problems. We draw on two case studies, one in frequency regulation and one in 

distribution system control, to exemplify these problems and show mitigating measures. We 

then provide general guidelines and literature to help people working on integrating learning 

capabilities for control purposes to make safety risks a central tenet of design  

 
 

1. Introduction 

 
Over the last decade, research on machine learning (ML) and arti- 

ficial intelligence (AI) has been growing and maturing, leading to an 

extensive variety of efficient algorithms to learn parameters and func- 

tions from historical data and real-time measurements. Energy and 

power systems scholars are rapidly developing new learning-based 

strategies to control dynamics in various areas of power systems op- 

erations, at different timescales. Some reasons behind these new 

learning-based approaches are to develop more sophisticated levels of 

control, to account for unmodeled uncertainty or inherently random 

aspects of a system, to adapt to changing conditions, or to manage new 

aspects of smart grids. While these developments hold promise for 

operating networks more efficiently and under higher levels of renew- 

able generation, they also introduce new vulnerabilities and safety 

risks [1], both technical and non-technical. These vulnerabilities are in 

part inherent to the nature of learning modalities, but also arise as new 

control methods are integrated in legacy infrastructure and practices. 

Traditional power systems tend to rely on relatively simple fit-and-forget 

control logics that historically did not need to be updated often, as 

systems were “overdimensioned” to sustain flow conditions for long 
term projections. The rapid and constant evolution of power systems, 

 
largely due to the energy transition, defies this traditional approach 

necessitating new control logics that leverage flexibility and try to get 

the most out of existing infrastructure to prevent expensive updates. For 

ML approaches to facilitate this transition, these have to be appro- 

priately designed to integrate in existing and often aging infrastructure, 

in such a way that no new safety risks are introduced and operators can 

work with them effectively. This requires these techniques to also be 

adequately connected to the system operator’s planning cycles to 
guarantee learned behaviors remain adequate in shifting environments. 

Understanding and mitigating new vulnerabilities that arise through 

the use of ML requires additional analysis and design thinking that is 

often overlooked in traditional power systems literature. 

So far, ML approaches in power systems have mostly focused on 

their affordances and little work covers new safety problems. The work 

in [2] provides an overview on how reinforcement learning (RL) has 

been used in power systems, discussing general trends, common algo- 

rithms used, and specific power system applications. It does not discuss 

safety issues. The authors of [3] discuss stability in power systems with 

the use of reinforcement learning, explaining how central RL assump- 

tions may break in power systems applications, making the use of these 

algorithms risky. In fact, RL approaches at large are mostly devoid of 

strong safety guarantees. Nevertheless, recent approaches outside the 
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power systems’ community are using RL considering safety and stability 
guarantees to address these risks [4,5]. 

In this paper, we discuss general safety-critical issues that can arise 

with the use of ML and AI, even when their mathematical assumptions 

are satisfied. We examine concrete safety problems in the design of 

learning-based controllers for power systems and propose guidelines for 

adequately analyzing and designing for these, making three contribu- 

tions. First, in Section 2, we review representative literature using 

machine learning techniques in power system control problems, and we 

discuss safety problems that arise in these contexts. We emphasize that 

there are plenty of other ML applications, such as security assessment 

and vulnerability, that are not directly explored in this paper but can 

also benefit from guidelines proposed in this work. In Section 3, we 

draw inspiration from [1] to categorize safety risks as expressions of 

typical AI failure modes, including negative (unintended) side effects, 

partial training data, safe exploration and distributional shifts. With 

these categories, we ground our analyses in Section 4, through two si- 

mulation results: controller design for frequency regulation in trans- 

mission systems [6], and data-driven decentralized control for (multi- 

agent) distributed energy resources in distribution networks [7]. These 

case studies provide sufficient breadth to discuss different power sys- 

tems contexts and timescales and the impact of learning on critical 

notions of safety. In Section 5, we propose guidelines for how safety 

risks can be addressed along the research, design, training and im- 

plementation of the proposed controller in the system. Finally, 

Section 6 concludes our paper. 

 

2. Machine learning and artificial intelligence for power system’s 
control 

 
In this study, we focus on the usage and risks of ML and generally AI 

for controlling power systems. There exist several applications for 

power systems that can benefit from using these techniques. In Table 1, 

we present a non-exhaustive but representative summary of ML appli- 

cations in power systems. In the framework of control theory, ML and 

AI techniques can be used in different areas: system identification, state 

estimation, disturbance and target prediction, and control action. In 

this paper we narrow down our focus to the use of ML and AI for de- 

termining control actions in power systems operations. It is out of scope 

to explore the use of ML in the context of: forecasting in power systems 

(e.g. load, wind or solar capacity factors) [28,29,31,32], clustering of 

electricity demand profiles [33], state/parameter estimation [21,23], 

theft detection [26,27], etc. Following the problem areas in Table 1, we 

cover the references and discuss what safety concerns arise. 

 
 Frequency regulation 

 
The work presented in [6,34] proposes a frequency regulation 

control scheme learned using least squares and lasso regression, re- 

spectively. In [6,34], power dynamics are modeled as time-variant due 

to the change in the inertia coefficients in the grid [11]. The training set 

 
Table 1 

Summary of applications of ML/AI on Power Systems. 
 

 

ML/AI Application Problem References 

in these studies is generated through solving optimization problems 

that find optimal actions for controlling frequency. A controller pro- 

portional to the states (frequency and angles) is assumed and learned 

from the training set. One of the challenges that this control design 

faces is robustness to safety-critical states (safe and persistent excita- 

tion/exploration), i.e. unusual high deviations in frequency. To address 

this, the training set includes optimal control actions when facing these 

less common but safety-critical initial states of high frequency devia- 

tions. If these stressed conditions are not included in the training set, 

the controller would perform well only under mild disturbances. Thus, 

it would not be able to steer frequency deviations back to zero at all 

times. Lastly, when designing a controller for a dynamical system, 

stability guarantees for the closed loop system are required for safety 

purposes. This work adds virtual inertia (controller proportional to the 

derivative of the frequency) to the controller in order to guarantee 

stability [6]. 

 
 Voltage regulation 

 
Relatively more studies propose data-driven controllers which can 

regulate voltages in distribution systems, e.g. [8–10,12]. Most of these 
employ offline optimal power flow calculations to derive the training 
dataset composed of the optimal DER setpoints. These are used to de- 
sign local controllers using different ML models and features. The work 

in [8,9] apply multiple linear regression to a set of local features and 

derives the individual DER controllers for reactive power control. The 

method does not interfere with the operation of existing legacy equip- 

ment, such as load tap changers and capacitor banks. This method is 

further developed in [10], in which also active power control and 

voltage balancing are considered. Reference [12] also considers active 

power curtailment, energy storage and controllable loads, by using 

segmented regression and support vector machines. To account for 

uncertainties,   the   offline   calculations   are   formulated   using   chance 

constraints. However, both references focused on expected operating 

behaviors without evaluating the system’s behavior under changing 
conditions. 

The authors of [7] compare the performance of the state-of-the-art 
data-driven controllers when the operating conditions differ from the 

training dataset of the controllers’ design stage. The importance of the 
local features selection is highlighted concluding that voltage magni- 

tudes comprise a significant local measurement that carries global in- 

formation through the physics of the power flow. 

Reference [35] uses deep reinforcement learning to learn a Volt-Var 

control policy trained to minimize operational costs while complying 

with the physical operational constraints. Contrary to optimization- 

based approaches, this method does not require accurate data for the 

topology and the network and its parameters. In order to statistically 

guarantee safety, this work uses a constrained policy optimization al- 

gorithm which guarantees satisfaction of the operational constraints in 

the form of expectation. However, since the learning of the controller is 

done offline using historical data, unseen real-time conditions impose 

the risk of violations. Furthermore, using realized historical data the 

method does not consider low frequency but safety-critical events. 

Lastly, since voltage violations are only taken into account as soft 

constraints in the objective function, there are no guarantees for the 
   voltage to stay within acceptable bounds. 

Data-Driven Control Design Voltage Regulation [8–10] 

Frequency Regulation [6,11] 

System Dispatch [8,12,13] 

Demand Response [14–19] 
Storage Management [12,13,20] 

 System dispatch and optimal power flow 

 
The work in [36] proposes a multi-agent framework to restore 

System Identification Fault restoration / 

identification 

[21,22] power systems after a loss in generation. The agents problem is solved 

with a Q-learning algorithm to determine switching to energize or de- 

 
 

Parameter Estimation / Series 

Forecasting Network Observability [23–25] 

Electricity Theft [26,27] 

Unit Commitment [28,29] 
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T&G Planning [30,31] energize load in a network. The 

framework proposed uses the 

ad- vantages of centralized and 

decentralized architectures to 

achieve ac- curate decisions 

and fast responses when 

potential failures are detected. 

   Simulations show how the proposed framework performs better than 
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the traditional centralized and decentralized approaches. However, as 

the authors discuss, due to the usage of a reward function that only 

values the amount of load energized, physical constraints are not taken 

into account. This can result in violations of voltage, frequency, power 

flow constraints, etc. Therefore, safety in the system is not guaranteed. 

While presented above as solutions to voltage regulation, the work 

in [7,9,10] is at heart a methodology to decentralize general OPF 

problems. The work in [10] considers training DERs to learn how to 

shape their nodal behaviors based on local information to collectively 

be independent from power flow coming from the substation. It also 

covers a case where voltages are balanced across three phases. The 

general ability to mimic OPF problems in a learning-based and decen- 

tralized fashion is quite powerful, but more study is needed to under- 

stand the exact breakdown scenarios of the method. The advantage is 

that all local controllers are open-loop and can be easily simulated and 

characterized for general safety analyses. 

In [37] the authors propose a data-driven framework that uses 

limited information on forecast error distribution in order to calculate 

stochastic optimal power flow. The objective of the power flow con- 

troller is to minimize a function of operational costs and conditional 

value-at-risk of power systems network constraint violations. The con- 

trol actions are power injections as well as power reserves to react to 

forecast errors from renewable energy sources (RES). The distribution 

errors are not known. The error information is only obtained through a 

finite training set. Using this, the authors propose a distributionally 

robust power flow optimization to determine power injections and re- 

serve schedules that are robust to sampling errors from the dataset. This 

work is mindful of safety concerns by addressing through their method 

the issue of distributional shift in the data used for training. 

 
 Demand response 

 
Demand response (DR) is also an important field in the literature 

that explores the use of ML/AI techniques in power systems. Different 

algorithms are proposed to provide several grid services. In [14,15] 

online convex optimization is used to track a setpoint with uncertain 

and flexible loads in demand response programs. Setpoint tracking has 

been studied in the past by posing it as a model predictive control 

(MPC) problem. The MPC formulation relies on precise load modeling 

and observations or state estimation. The main benefits of using ML/AI 

in this context are that load modeling, communication requirements, 

state estimation, and perfect information of the setpoint signal are not 

entirely necessary to compute scheduling decisions. 

The work in [16] uses online learning (OL) in a multi-armed bandit 

framework to provide load shedding while learning load parameters. 

Similarly, [17] uses OL in a bandit framework to provide load shedding 

services while considering load constraints. Reward manipulation is a 

critical safety issue here, since both papers assume fiXed curtailment 

parameters that can be potentially manipulated under strategic beha- 

vior. In [18], an OL algorithm is used to select thermostatically con- 

trolled loads (TCLs) to provide load shifting services to flatten the load. 

The model assumes that the TCLs are always available to schedule, this 

may not hold in scenarios in which the appliance is disconnected from 

the service. 
In [19], RL and a deep neural network (DNN) are used to propose an 

incentive-based DR algorithm. A DNN is used to forecast electricity 

prices and load patterns, and a Q-learning algorithm is used by a service 

provider to compute incentive rates to consumers that promotes load 

reduction. The paper provides guidelines on how the proposed frame- 

work could be implemented in practice. However, no specifications are 

provided on how to set-up learning hyper-parameters in a practical 

scenario, and no discussion is included on the impacts of them in system 

performance. 

Despite the many advantages of using ML/AI in DR settings, there 

are certain safety issues that arise from these papers. First, physical 

constraints of a network are not modeled. This can lead to violations of 
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power flow, voltage limits, and potential negative side effects. 

Second, as mentioned early, no methods are presented for the selection 

of some hyper-parameters used in the different ML algorithms. Finally, 

dispatch or reward manipulation and strategic behavior of participants 

can in- validate important assumptions that ensure theoretical results 

and ex- pected behavior. Thus, performance can vary widely 

depending on these effects, posing a challenge on the implementation of 

such algo- rithms in real power systems. 

 
3. Review of safety risks in AI 

 
The rapid adoption and ubiquitous experimentation with machine 

learning has led to concerns about safety [38,39]. Inspired by these 

taxonomies, we focus on safety risks of using ML in power systems. The 

above taxonomical work considers safety issues emerging in the stan- 

dard setting of designing an intelligent agent within an environment. 

While it provides a good starting point, power systems issues tend to 

be of higher complexity than typically assumed in learning theory. First, 

many control design issues in power systems are more complex with 

multiple controlled nodes, requiring a multi-agent approach [9]. And 

second, the environment that agents need to learn about entail extensive 

existing legacy control systems, infrastructure and practices, having 

various physical, digital and social layers [40]. As such, for ML 

schemes to be effective and not defy any existing safety mechanisms, it 

is critical to take legacy seriously in making assumptions and design 

considera- tions, and frame learning problems as challenges of 

integration rather 

than “deployment” or “automation” [41]. 
Building on [38,39], we characterize the safety concerns that are 

most relevant for learning-based control in power systems. These pro- 

blems are not necessarily mutually exclusive, but collectively 

describe the challenges that the authors believe deserve more attention 

in power systems and control research. 

 
 Avoiding negative side effects 

 
An ML model optimizes its actions according to an objective 

func- tion, with possible constraints, that may not be able to capture all 

the behaviors to keep a system safe. What potential side effects can we 

expect, and can we account for these in formulating the learning pro- 

blem? 

 
 Persistent excitation and safe exploration 

 
ML models trained in an offline fashion rely on training data 

that represents the conditions in which the resulting models are used. 

What data is needed to ensure learned parameters result in safe 

behavior in practice? How do we make sure that scenarios that are 

safety-critical, but do not occur (often) in historical data are addressed 

effectively in training? Online ML approaches require randomized 

exploration to 

understand how to behave “optimally”, which can lead a system into 
unsafe territory. What safety mechanisms are available to prevent 
un- 

safe exploration scenarios? 

 
 Robustness to distributional shift 

 
The environment is subject to inevitable change, especially in many 

power systems where new appliances connect and disconnect. How do 
we make sure a machine learning model recognizes or is robust to such 

changes? And how do we ensure the model’s own control actions do not 
cause detrimental distributional shift? 

 

 Safe Integration in legacy systems and practices 

 
Most power systems rely on human operators to take control actions 

or intervene in contingency scenarios. How do we ensure a human 

operator can safely override or complement the actions of the learning- 
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t 

 

based control scheme? And how do new learning-based controllers in- 

teract and complement existing legacy control mechanisms? 

 
4. Case studies 

instances, the learned controller may not be fast enough to compensate 

the rate of change of the frequency in the event of contingencies. 

To prevent instability, this case study complements the learned 
controller with a term that depends on the derivative of the frequency, 

KV ω˙ , which represents a virtual inertia resource for the system, yielding 

In this section, we use two case studies to exemplify the four safety 

problems covered in Section 3. While all four problems are relevant in 
u = KL (θ⊤, ω⊤)⊤ + KV ω˙ . (3) 

both case studies, space limitations constrain us to discuss each cate- 

gory for one of the case studies. We also focus our attention on su- 

pervised learning models that are trained in an offline fashion. This is 

motivated by the fact that such models, as compared to online/re- 

inforcement learning models, have more structure and can be more 

readily designed to take safety considerations into account. Section 5 

will provide some pointers for readers interested in safety concerns for 

online approaches. 

 
 Controller design for  frequency  regulation 

 
 Motivation 

With the increasing penetration of non-synchronous variable RES in 

power grids, the system’s inertia decreases and varies over time, af- 
fecting the efficacy of current control schemes to handle frequency 

regulation. Introducing time-varying inertia parameters complexifies 

the design of frequency controllers –now the controller has to perform 
well and be stable across all inertia parameter values. In order to pre- 
vent excessive tuning and analysis and produce a stabilizing control 
scheme, [6] proposes a learning approach to determine a fixed con- 

troller based on a dataset consisting of the input values produced by 

optimal linear-quadratic regulator (LQR) controllers designed across 
different parameter settings. The approach uses a least squares regression 

in which a linear feedback matriX is determined to best fit the LQR 

input values across all scenarios in the dataset. Mathematically, the 

approach learns a time-invariant controller of the form ut = KL xt where 

KL is a constant matriX. The training dataset (x(k), u(k)) represents op- 

timal solutions for k = 1, …, K scenarios to the LQR problem, 

The parameters of KV are chosen using a heuristic based on a bisection 

method. KV is assumed of the form KV = kv In×n. Iterating over kv, kv is 

modified until the discretized closed loop system for the low inertia 

modes has all its eigenvalues inside the unit circle, making it stable as 

can be seen in Figure 1. As a result, adding virtual inertia guarantees 

stability for all the dynamical modes and learning can be safely used to 

design a fiXed controller that is stable across all inertia scenarios. 

The key insight of this mitigating measure, is that the ML procedure 

may not be able to capture all critical safety specifications explicitly, 

and additional analysis and control design may be needed to satisfy 

these. 

Persistent Excitation and Safe Exploration 

In order for the learned controller KL to reflect the behavior of the 

LQR controllers it is relevant that the dataset sufficiently represents all 

the different scenarios, as well as safety-critical states. Put differently, 

for each scenario and LQR controller, we want to make sure its behavior 

is persistently excited and captured in the dataset, so that it can be 

integrated in the learned fiXed controller. 

In order to design a robust frequency controller, different safety- 

critical initial states x0 of frequency deviations are simulated in the 

generation of the training set. These are randomly drawn from a normal 

distribution with zero mean and unitary variance. This allows the 

learned controller to be able to steer frequency back to its nominal 

value under more critical circumstances, as well as during typical de- 

viations. If these safety-critical deviations would not be included in the 

training set, the learned controller would not be able to perform well in 

all scenarios. The controller would only be able to steer frequency de- 

viation back to zero for mild cases of disturbances. Thus, it is imperative 

to include the worst case scenario in the training set. min T  x ⊤ Qxt + u ⊤ Rut , 
x,u   

∑
t=0   t t 

s.t. x0 = x(0) , 

xt+1 = Aq (t) xt  + Bq (t) ut , 

 
t ∈ {0, T − 1} , 

 
(1) 

 Data-driven controllers for distributed energy resources 

 
 Motivation 

where Q is a positive semidefinite matriX, R is a positive definite matriX, 

T is the control time horizon, x(0) is the initial state, and the matrices Aq 

(t) and Bq(t) characterize the dynamical system with time-varying inertia 

coefficients represented by the hybrid mode q(t) as described in [11]. 

The least squares problem reads 

Based on the available monitoring and communication infra- 
structure, DERs can be controlled via centralized, distributed or local 

approaches. Lately, data-driven control design methods have gained a 

lot of attention [7–10,12,13,42]. These methods are hybrid in the sense 

that the controllers  are “trained” using  offline centralized approaches, 
but the derived controls are local, and can be used when little or no 

K   T min u (k)   
 

 
K x (k)   2 

.  

 
communication infrastructure is available, thereby also allowing for 

∑ ∑ t 
KL    k=1  t=1 

−    L   t 2 
(2) less data sharing that may contribute to privacy needs. 

In addition, these methods allow for principled and automated 
Results show that the learned controller can be used to obtain a similar 

(satisfying) performance as the optimal LQR controllers in the different 

inertia modes. 

 
4.1.2. Tackling safety risks 

Following the taxonomy in Section 3, we identify the following risks 

in this case study. 

Avoiding Negative Side Effects 

When learning a controller for a dynamical system using least 

squares, we are purely optimizing the extent to which the controller 

KLx (k)   fits the optimal LQR controller values from (1). This exercise 

allows for some of the values to be poor fits, at the expense of im- 

proving others. As a result, the learned controller does not inherit the 

guarantee that an individual LQR controller has in terms of its closed 

loop stability. Resulting in a learned controller that can be unstable for 

some of the time-varying inertia scenarios. This is more likely to happen in 

low inertia scenarios, such as when more solar is produced. In these 
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u 

controller tuning, preventing excessive manual labor that can render 

distributed control methods economically unfeasible. Lastly, these ap- 

proaches can help utilities to distribute infrastructure updates in 

time and space, thereby preventing more capital intensive updates 

[10]. 

Optimal Power Flow Formulation 

The first step of the data-driven control design method is to compute 

optimal DER setpoints for different operating conditions through an 

Optimal Power Flow (OPF) procedure, under specific objectives, such as 

system    losses    minimization    [12,42]    or    reference     voltage 

tracking [8,10]. System safety and power quality considerations can be 

addressed by including appropriate constraints in the optimization 

problem. 

Formally, the OPF problem can be represented as 

min c (x, u) (4a) 

s.t.   f (x, u, y)=0∀ j, t ∈ (, 7, (4b) 



International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  

ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

419 
 

t 

n 

n 

n 

1,t 

2,t 

t N    

k 

n n n 

k 1 2 NK 

hV (x, u, y)≤0∀ j, t ∈ (, 7, 

hI (x, u, y)≤0∀ i, t ∈ Z, 7, 

hDER (x, u, y)≤0∀ j, t ∈ (, 7, 

 
(4c) 

(4d) 

(4e) 

 
Table 2 

Partitioning of nodal variables for all bus types. 

EXogenous 
 

 

Controllable - u Uncontrollable -  d 

 
 
 
 

Endogenous 

 
end 

gDER (x, u, y)=0∀ j, t ∈ (, 7. 
 

(4f) 

 
 

PQ generation p ,  q   

n xn 

V , δ 

A distribution network with a set of nodes     : =1, 2, …, Nb (denoted PQ load pn, qn Vn, δn 

by index j) and a set of lines    : =1, 2, …, Nbr (denoted by index i) is PV generation pn, Vn qn, δn 

considered. In order to account for the inter-temporal constraints of 

several DERs, it is necessary to solve the following multi-period AC OPF 

over the time horizon : =1, …, Nhor (with each timestep denoted by 

index t). u represents the control vector, e.g. the DER active and re- 

active power setpoints, the position of the transformer taps, etc.; x 

corresponds to the state vector, i.e. the bus voltage magnitudes and 

angles (except for the slack bus, where the angle is set to 0 degrees and 

the magnitude is fiXed); and y defines the constant parameters vector, 

comprising of the network topology, physical characteristics of the grid, 

and the thermal and voltage constraint limits. The operator optimizes the control vector u over the objective function given by (4a), where 

slack bus V0 δ0 p0, q0 
 

 

 
the measured variables away from the distribution of the training data. 

This phenomena, called policy shift [43], can offset the intended effects 

of the controller and lead to unsafe behaviors such as constraint vio- 

lation and instability. 

We can address this challenge in a principled way by basic control 

theoretic analysis. We reformulate the state variables per bus as 

⎡Vn ⎤ 
x :   ⎢δn⎥ 4 

the function c(x, u) represents the various objectives. Equation (4b) 
n =⎢ pn

⎥ ∈  . 
⎢q

n 
⎥ (6) 

corresponds to the power flow equations enforcing active and reactive ⎣   ⎦ 

power balances at each node. Equations (4c) - (4d) correspond to 

power quality constraints. Finally, (4e) - (4f) refer to DER models and 

constraints, e.g. technical and regulatory limitations on the DER op- 

erational power factor, constraints for the flexible loads depending on 

the nature of the load that can be shifted, setting a minimum and 

maximum per unit limit for the battery state of charge, a dynamic 

equation that updates the energy capacity at each time step based on 

the battery efficiency, etc. The second step uses the obtained optimal 

setpoints to design local DER controls for the real-time DN operation 

using ML techniques. 

Data-driven Control Design The real-time response of the jth inverter- 

based DER ( j ∈ [1, 2, …, NJ]) in terms of reactive power control q (j) is 

derived from the NOPF optimal setpoints (t ∈ [1, 2, …, NOPF]) obtained in 
the offline calculations, and the final rules depend only on local fea- 

tures. The feature matriX Φ(j) ∈ RNOPF x NK contains as columns the NK 
features and as rows the NOPF observations of the kth input measurement 

ϕ (j) ∈ RNK , i.e. Φ(j) = [ϕ (j), ϕ (j), ⋯, ϕ (j) ]T . 

As base features for the reactive power control the work follows [8] 

and uses the net active power demand ϕ (j) = Pg,j,t − Pl,j,t, the reactive 

power demand ϕ (j) = Ql,j,t, and the maximum reactive power capability 
of the inverter ϕ (j) = Q max . Combinations of these features are also 

We partition the state xn into controllable inputs un, uncontrollable 

inputs or disturbances dn and endogenous variables x end . This parti- 
tioning is done per bus, based on the bus type, as suggested in [44] and 

summarized in Table 2. 

In building a learning-based controller for a DER, the ML model can 
have as inputs a selection of the exogenous uncontrollable variables dn 

and/or the endogenous state variables x end, i.e. we are designing a local 

policy un: =πn (dn, x end) for all buses n that have a controllable DER. 

Policy shift will only occur to the endogenous variables, as these are 
dynamically coupled with the input. To prevent policy shift, [10] only 

relies on exogenous variables, i.e. un ≔ πn(dn). In effect, this yields a 

feedforward controller which is typically used to give the desired re- 
sponse to command signals or objectives [45], in this case representing 

the OPF objectives and constraints. See [46, Sections 3.1 and 5.2] for 

more details on this control-theoretic perspective. 

Natural shift - changes in the environment The second form of dis- 

tributional shift is the inevitable occurrence of changes in the en- 

vironment, which entail both unanticipated fault conditions as well as 

the (de-)installation of new electrical equipment. The data-driven 

schemes may perform very well in terms of mimicking the OPF set- 
points seen in the training and test datasets, but what happens when the 

3,t g,j,t 
considered,  i.e.  ϕ(j) = ϕ (j)·ϕ (j)  and  ϕ(j)  = (ϕ (j))2.  Finally,  the  feature actual conditions deviate away from the ones seen in the training stage? 

4,t 1,t (j) 2,t (j) 5,t 1,t (j) Could data-driven schemes endanger the security of the system? 
matriX is given by Φ1 = [ϕ (j), ϕ , ϕ (j), ϕ ]T . Using  the least  squares 

1,t 2,t  3,t   4,t 

method, the local model for reactive power control is derived by solving 

min    ∑   (q (j) − q̃ (j))2, 

Here two strategies may be viable. The first is to see if some of these 

changes can be anticipated and simulated to be added to the training set 

a priori. The second is to see if feedback can be added to the controller 
α t t 

∈ OPF (5a) policies. With feedforward control alone, we do miss out on the ability 
of feedback, i.e. using endogenous state variables x end as inputs to the 

q̃ (j)  = α (j)  +  ∑ α (j)·Φ(j), 
n

 

t 0 k 1 
k⊂K    (5b) 

learning-based controller, which can help to improve robustness and 

effective disturbance attenuation [45]. To include feedback from en- 

where α (j) are the k + 1 regression coefficients of the jth unit for the 

k ⊂ NK features. A similar model for active power curtailment can be 
derived. 

 
4.2.2. Tackling safety risks 

According to the taxonomy of Section 3, we will focus on the fol- 

lowing risks: 

Robustness to Distributional Shift The data-driven DER controllers 

may suffer from two inherent forms of distributional shift. 

Policy shift - the effect of control actions The historical data used to 

run OPF simulations to determine optimal setpoints for all DERs typi- 

cally does not involve the control actions of the DERs yet. Once the 

learning-based controllers are implemented the control actions will 

impact the dynamical state variables thereby shifting the distribution of 

n 
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dogenous state variables requires careful analysis of stability and con- 

vergence [47]. More recent work in [7] combines feedforward and 

feedback, thereby allowing some policy shift in return for controllers 

that are more robust against natural distributional shifts. 

Here, we showcase the effect of this strategy for a scenario where a 

new PV unit is installed at node 11 of the Cigré benchmark radial re- 

sidential LV grid presented in [48]. Without retraining the local con- 

trollers, this causes overvoltages at node 19. Fig. 2 shows the evolution 

of the voltage magnitude difference for node 19, phase C, due to the 

additional PV unit at node 11. We investigate the difference of the 

following cases: 

 
Method 0: The PV units are operating according to the existing 

grid code [49]. 
• 
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Fig. 1. Eigenvalue placement for the closed loop system in mode with lowest 

inertia using the learned controller KL (crosses) and adding virtual inertia 

control KL + VI (circles). 

 

Fig. 2. Comparison  of the voltage  magnitude difference  at node 19, phase  C, 

due to the installation of a new PV unit at node 11. 

 
Method 1: The PV units are controlled based on the data-driven 

schemes derived before the addition of the new PV according to the 

method summarized in Section 4.2.1.2. 

Method 2: The same data-driven scheme is used before the addition 

of the new PV, but this time, the local voltage is used as an addi- 

tional feature to derive the final scheme. 

 
We observe that the data-driven scheme without the voltage mag- 

nitude feature (Method 1) results in a marginally larger impact on 

voltages than the current fit-and-forget approach (Method 0). In this 

case the difference is marginal, but highlights the difficulties in an- 

ticipating the response of data-driven controllers under distributional 

shifts. In order to consider such unsafe cases, one can either consider 

them in the offline OPF conditions, or design controllers to react to the 

local voltages as in Method 2. 

Safe Integration in Legacy Systems and Practices 

The behavior of the controllers depends on legacy control equip- 
ment and the decisions made by these in an automated fashion or by 

human operators, for instance for a substation’s transformer equipped 
with on-load-tap-changers or shunt elements. In most practical con- 

texts, these practices cannot be part of the learning-based controller 

design, and instead the learned controllers have to be able to collabo- 

rate and interact with these in a safe and effective manner. In this 

context, the operation of tap-changers does shift the distribution of 

voltage measurements, and hence controllers that rely on voltage are 

affected by it. In earlier work, these impacts of legacy equipment were 

an extra reason to opt for a feedforward policy that only relies on 

exogenous disturbance variables [8], as discussed above. As a result, 

the controllers are merely adjusting the nodal load profiles, without 

reacting to the voltage, thereby they are fully decoupled from other 

controllers, including other local learning-based controllers and legacy 

equipment. With this approach, an operator can safely change its tap 

• 

• 
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1 

0 

settings or even switches without a measurable response from the 

learned controllers, making this approach more easy to integrate in 

existing grid operation practices. 

Avoiding negative side effects 

The initial results that OPF results could be reconstructed and mi- 

micked in a fully decentralized fashion under broad circumstances 

came as a surprise to control theorists, as it is generally assumed and 

analyzed that communication is needed to implement voltage regula- 

tion schemes that converge and satisfy voltage constraints [50]. The 

OPF formulation is of crucial importance in the design stage of data- 

driven controllers. Neglecting constraints may lead to undesired beha- 

vior and controllers that are not sensitized to safety boundaries. Put 

positively, the offline centralized OPF computations to build a 

training set that includes the effect of constraints makes it possible to 

sensitive learning-based controllers, even when these are all acting 

based on local information. This makes the use of supervised learning 

approaches much more valuable than online/reinforcement learning 

approaches, for which the integration of constraints in policy learning is 

still an understudied area [51]. 
To illustrate the importance of constraints for safety problems, 

consider the maximum acceptable voltage unbalance factor (VUF) [52], 

which, if exceeded in practice, endangers the proper functioning of 

specific loads. This can happen when using a single-phase representa- 

tion of the distribution grid in the design stage. 

Table 3 shows the maximum VUF at selected nodes for a 30-day 

operation using data-driven controllers that have (VUFmax ) and have 

not (VUFmax ) considered the VUF constraint in the training stage as 
an 

explicit constraint. The maximum acceptable value set in the OPF for- 

mulation is 2% and higher values could harm the equipment. We ob- 

serve that node 12 shows lower values since it is electrically closer 

to the transformer when the three-phase voltage is regulated. On the 

contrary, nodes further away show larger and unacceptable values. 

Although both approaches experience VUF violations, only the case that 

considers the VUF constraint satisfies the grid code requirement to 

maintain the value below 2% for at least of 95% of each week. For node 

19, the node with the maximum VUF values, the constraint was sa- 

tisfied 96.2% of the month compared to 87.1% for the case that does 

not consider it. 

 
5. Guidelines to address safety risks 

 
Drawing together a combination of the best practices from the case 

studies in Section 4 and relevant literature, we present guidelines to 

address the most relevant safety risks. These guidelines are divided into 

considerations done in problem formulation and design, in empirical 

tests and tools and in sociotechnical aspects of power systems opera- 

tions. 

 
 Explicit considerations in problem formulation and control design 

 
 Offline versus online learning 

While most applications of machine learning for control or decision- 

making deploy some form of offline or supervised learning, in recent 

years the machine learning and broader artificial intelligence commu- 

nity has spent much energy on forms of online or reinforcement learning 

in which controller parameters are learned while operating a 

system. 

 
Table 3 

Maximum voltage unbalance factor using data-driven controllers over a period 

of a month. 

 

 
 

VUF0 

1 

 
Node 

 

 
12 16 17 18 19 

max 1.64 3.02 2.65 3.14 3.31 

VUFmax 1.58 2.30 2.1 2.37 2.53 
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While reinforcement learning control schemes can yield sophisticated 

nonlinear control behaviors, these generally lack the structure and 

ability to shape or constrain dynamical behavior for safety (see below 

for some nascent work). In addition, online methods may take a long 

time to learn such behaviors. Without proper safety mechanisms, there 

are zero guarantees for the controlled system not to fail, crash or 

otherwise break down. As such, while potentially less expressive, offline 

methods may form a more welcome alternative in safety-critical si- 

tuations that require guarantees and a priori safety analysis. 

 
 Exploiting the laws of physics (hybrid modeling) 

If information is available about the physics of a system, it can help 

to exploit it by training a ML model based on simulations of such 

physics. The work in [8,10,12,42] exploits this to incorporate important 

safety constraints, that the resulting ML models end up respecting with 

very high probability, despite the fact that the models are implemented 

in a fully decentralized fashion. In RL, model-based methods allow to 

encode more structure into models [53], and recent work explores 

learning constraints [51]. 

 
 Variable partitioning 

Machine learning models used to inform or act as controllers, will 

use variables as input features. The choice of what variables to use has 

profound effects. Variables can be partitioned in two groups, those re- 

presenting dynamic behavior endogenous to the system itself or, more 

often, of variables that act as exogenous disturbance variables. Using 

endogenous state variables comes with the issue of policy shift [43,54], 

which means that either the training data is skewed by control actions 

taken during collection, or the training data was collected without 

control actions and is skewed by the introduction of the learning-based 

controllers itself. In situations where data can be gathered through 

controlled perturbation experiments in such a way that all relevant 

dynamic modes can be persistently excited, the learning problem can be 

rephrased as a system identification [55] or adaptive control problem. 

For learning exogenous behavior, like weather variables or other vari- 

ables that are not dynamically coupled in the system, applying machine 

learning is more straight-forward. Instead of persistently exciting a 

system, for these variables we want to make sure we include data for all 

possible scenarios these variable may be in. 

 
 Safe learning 

In situations where online methods are needed, one may consider 

combining learning with a safety controller that serves as a backup in 

situations where the exploration process becomes risky. Recent work 

has considered constructing control methods that allow for safe learning. 

These methods construct an unsafe set of behaviors that the system 

cannot enter into, and construct a controller that switches between a 

learning mode and a safety control mode once the boundary of the 

unsafe set is hit [5,56]. Because the method is learning about the en- 

vironment, the unsafe set can be updated when new information is 

gathered, either to further restrict the allowable behavior or to increase 

the range and make the system more agile. 

 
 Stability guarantees 

As discussed in Section 4, using learning to develop a feedback 

policy may lead to an unstable system, which we addressed by doing a 

posteriori checks on the resulting policy to ensure it is stable. Recently, 

researchers developed a way to integrate explicit stability guarantees 

into reinforcement learning procedures [4]. 

 
 Formal verification 

Verifying formal properties of learning-based systems is generally 

considered an extremely challenging problem, due to the general in- 

ability to appropriately model the environment, to formally specify a 

requirement, to the challenge of modeling systems that learn (online 

methods), the lack of effective computational engines and lack of 
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methods to integrate formal verification into the design process [57]. 

That said, the need to build more secure and safer ML systems does 

motivate ongoing work in this area [58]. 

 
 Empirical tests and tools 

 
 Worst case and adversarial testing 

The changes that happen in power systems may form challenges to 

the settings of any control scheme. It is of high importance to fail test a 

learning-based controller for a variety of scenarios, both expected and 

worst case, to understand its robustness against changes and un- 

expected phenomena. In addition, machine learning models are 

vul- 

nerable to being strategically gamed or hacked, especially as the 

model’s input dimension increases [59]. Further, stakeholders may 
have an interest in the outcomes of a model and behave strategically 
[60]. Lastly, reinforcement learning algorithm themselves may cut 
corners, receiving higher rewards through unintended and 
potentially 
harmful behavior [61]. It is crucial that control schemes that rely on ML 

models are tested in an adversarial sense to understand what damages 

may occur. Such information can inform a practitioner to decide 

whe- ther the approach is robust enough and what extra measures are 

needed to mitigate adversarial and worst-case situations. 

 
 Data generation  (historical versus simulated) 

In addition to historical data, changes in the environment that 

can be anticipated can be simulated and augmented in a training 

dataset. This is especially relevant in control schemes for distribution 

systems where new energy resources are connected at an increasing 

rate. By training a ML model with an appropriate proXy of the future 

changes, performance and safety issues may be alleviated. That said, it 

does not form a formal guarantee and requires analysis to understand 

the value and limitations for a particular application. 

 
 Calculation of risk probabilities and mutual information 

Most ML models produce point predictions, that do not commu- 

nicate how certain the model is. New advances in probabilistic ML 

try to develop models that also account for uncertainty in both model 

paramaters and predictions [62]. These are crucial for scientific ana- 

lysis and may also inform the safety analysis for learning-based control. 

Related, a ML model can often also be interpreted as a reconstruction 

of a dataset or optimization problem. In [9], the mutual information is 

estimated between the outputs of an ML model and the results of an 

OPF problem that were used to train the ML model. This way one can 

determine how well the ML model reconstructs the OPF problem, 

providing information on whether the model should be improved with 

extra input features or communication between buses in the 

network. 

 
 Sociotechnical design considerations 

 
 Engaging with legacy systems and practices (before you design) 

The guidelines so far are all broadly applicable but do not form a 

“silver bullet” to get your ML based control design right. In practice, 
every control challenge is unique and situated in a complex environ- 
ment with legacy infastructure, systems and practices. The most can be 
learned and attained by engaging closely with this legacy to 
understand 

what kinds of assumptions can be made and how the learning problem 

can benefit from existing structure and domain knowledge. In the en- 

gaged work the authors have done, some general lessons have emerged 

that are worth mentioning. First, the increasing integration of planning 

and operation [42]. This is both motivated by the higher frequency of 

changes in the grid, but further realized through learning based con- 

trollers which can be a tool not just in operations but also in simulating 

behaviors in the grid over longer time horizons. Second, the importance 

of interpretability. Having a functioning model that has fewer input 

variables or parameters is generally preferred by engineers who end up 

having to work with the models and debug and analyse them for safety 
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problems. Third, the interaction with older control equipment is often 

inevitable. While researchers may want to champion a drastically new 

approach that replaces existing software or hardware, the economic 

reality of most utilities is that building on existing infrastructure is a 

given. This fundamentally shapes what is possible and, while forming a 

constraint on the design space, may lead to new theoretical ad- 

vances [9]. Lastly, building learning-based systems includes adopting 

and making lots of assumptions about values that can lead to undesir- 

able biases and impact how people interact with a system. Anticipating 

such value conflicts early on in the design process can help shape the 

possible outcomes and prevent issues down the line [63]. 

 
6. Conclusion 

In this work, demand response, ideal power flow, 

frequency regulation, and voltage regulation were all 

evaluated in relation to the use of machine learning to the 

design of power system controllers. Relevant safety issues 

have been found and discussed in recent research. For two 

case studies that also included mitigation strategies and 

architectural components, these challenges were made 

concrete. A series of recommendations for including safety as 

a key component of learning-based controller design was 

offered based on lessons learned. These recommendations 

cover problem formulation, empirical testing, and interacting 

with the domain and its legacy infrastructure, systems, and 

practises.These guidelines aim to stimulate a more rigorous and 

thoughtful consideration of safety pro- blems in the expanding use of 

machine learning in power systems and other safety-critical contexts. 
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