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ABSTRACT 
  

To make effective use of the hardware resources available in 

today's multicore CPUs, the last-level cache is frequently shared 

by a number of processes running simultaneously. A shared 

cache, however, is susceptible to timing channel attacks that leak 

private information from one process to another, according to 

earlier research. The cache timing channels can be removed via 

static cache partitioning, however this comes at a significant 

performance cost. We suggest Secure Dynamic Cache 

Partitioning (SecDCP), a partitioning method that foils cache 

timing channel assaults, in this study. The SecDCP strategy 

prevents unsecure information leaking between processes while 

adjusting the number of cache divisions at runtime for greater 

efficiency. According to our experimental findings, SecDCP 

outperforms static cache partitioning for multiprogram workloads 

that are cache-sensitive by up to 43% on average and 12.5% on a 

per-workload basis. 

 

1. INTRODUCTION 
Multicore processors are widely used in today’s computing sys- 

tems, including cloud servers and mobile devices. In the architec- 

ture of multicore processors, the last-level cache is often shared by 

multiple cores to improve hardware efficiency. Each core can run a 

different application and contends for the cache resource. 

Since the last-level cache is shared, different applications can in- 

terfere with each other by evicting each other’s cache entries. Be- 

cause cache misses take much longer than cache hits, an applica- 

tion can thus affect the execution time of another application, which 

may be exploited to initiate timing channel attacks. Indeed, previ- 

ous work [2, 11, 8] has shown various timing channel attacks based 

on cache interference. It is important to defend against these tim- 

ing channel attacks because they introduce serious security threats 

in modern computing systems. In cloud computing, a user’s appli- 

cations are scheduled to run concurrently with other applications, 

which could be malicious and try to infer private information about 

the user through cache timing channel attacks. A similar problem 

exists in current mobile devices such as smartphones. If a user 

downloads an application that contains malware, this malicious ap- 

plication might run concurrently with the user’s banking applica- 

tion, stealing confidential information. 

Previous work [10] proposes static cache partitioning to defend 

against cache timing channel attacks. In static cache partitioning, 

 
 

application can only use its own partition of the cache, thus effec- 

tively eliminating any cache interference. However, static cache 

partitioning incurs significant performance overhead because the 

partition size cannot adapt to the changing cache behavior of each 

application. To improve the performance of static cache partition- 

ing, previous work [14, 12, 17, 13] proposes dynamic cache parti- 

tioning techniques that change the partition size dynamically based 

on the run-time demands of applications. Unfortunately, previous 

dynamic partitioning techniques are still vulnerable to cache tim- 

ing channel attacks because the partitioning policy relies on the 

run-time behavior of each application. Consequently, a malicious 

application can learn confidential information about another appli- 

cation by observing how cache partition sizes change. 

In this paper, we present Secure Dynamic Cache Partitioning 

(SecDCP), a new scheme that dynamically partitions the cache yet 

does not leak confidential information through timing channels. 

We note that applications running on a multicore processor have 

diverse security requirements. Public applications (e.g., simple 

games) do not contain confidential information, hence they require 

little protection against information leakage. On the other hand, 

confidential applications (e.g., medical app), which involve com- 

puting on confidential data, need strict timing channel protection. 

SecDCP leverages this asymmetry of applications’ security require- 

ments to perform dynamic cache partitioning while satisfying each 

application’s security needs. In other words, SecDCP prevents in- 

formation leakage from confidential applications to public appli- 

cations, but allows information to flow from public applications to 

confidential applications. We call this kind of timing channel pro- 

tection as one-way protection. 

Using one-way protection, SecDCP is able to use the cache de- 

mand of public applications to allocate the partition sizes at run 

time. Specifically, SecDCP grants public applications larger cache 

partitions when these applications can benefit significantly from 

more cache. Conversely, SecDCP shrinks the partition size of pub- 

lic applications when they cannot effectively utilize their current 

partitions, allowing confidential applications to improve their per- 

formance. Consequently, system performance improves as a whole 

even though SecDCP uses only the cache demand of public appli- 

cations to change partition sizes. Our experiment results show that 

SecDCP outperforms static partitioning by 12.5% on average for 

cache-sensitive workloads. 

This paper has the following main contributions: 

The paper proposes SecDCP, a secure dynamic cache parti- 

tioning scheme that defeats timing-channel attacks caused by 

interference between processes, including both side-channel 

attacks and covert-channel attacks. 

The paper discusses extending SecDCP to support a general 

security policy and shows the extension is non-trivial because 

of new security threats. 

• 
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This paper evaluates the proposed schemes and shows that 

SecDCP improves performance even though dynamic parti- 

tioning is based solely on the cache demand of the public 

applications. 

The rest of the paper is organized as follows. Section 2 presents 

related work. Section 3 discusses our threat model. Section 4 de- 

scribes details of the secure dynamic partitioning scheme. Section 

 

 

Security Class 

 
Tier N 

 
 
 
 

Tier 2 

 

 
Tier 1 

5 evaluates the proposed scheme. Section 6 concludes the paper. 

 

2. RELATED WORK 
Recent studies [2, 11, 8] have shown that shared caches are vul- 

nerable to timing channel attacks. In general, cache timing channel 

attacks exploit the cache interference between the victim and the 

attacker. For example, a victim process may evict some of the at- 

tacker’s cache lines, delaying the attacker process. The attacker 

process can then use this timing information to infer confidential 
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Figure 1: Hierarchical security policy. 
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information (e.g., encryption keys) about the victim process. 

Software solutions [9] rely on rewriting the software to remove 

known timing channels, hence they are attack-specific and incur 
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significant performance overhead. Hardware solutions provide more 

general protection against timing channel attacks. Various secure 

cache designs [10, 15, 16, 7] haven been proposed recently. The ap- 

proaches taken by these designs fall into two categories: random- 

ization and partitioning. In the randomization approach [15, 16, 

7], the memory-to-cache mapping is randomized to obfuscate the 

attacker’s measurement. Although this approach can hide which 

cache line has been accessed by the victim, randomization does not 

hide the number of cache accesses. Hence, randomization cannot 

defend against covert channel attacks, in which an attacker inten- 

tionally manipulates the number of cache accesses to send confi- 

dential information. In the partitioning approach [10], the cache is 

statically divided into multiple partitions. Each partition can only 

be used by one process, thereby eliminating the cache interference 

between the victim and the attacker. However, static cache par- 

titioning incurs high performance overhead because the partition 

size cannot adapt to the runtime cache behavior of each process. 

Previous work [14, 12, 17, 13] has studied dynamic cache par- 

titioning techniques, utilize the runtime cache demand information 

of each application to adjust the partition sizes. However, previ- 

ous dynamic partitioning schemes are vulnerable to timing channel 

attacks because the dynamic partition sizes reveal the runtime de- 

mand of confidential applications. To the best of our knowledge, 

this work is the first to propose dynamic cache partitioning as a se- 

curity mechanism to defend against cache timing channel attacks. 

 

3. THREAT MODEL 
In this paper, we aim to remove cache timing channels between 

different applications in a multicore processor. The processor’s 

memory hierarchy consists of one or more levels of private caches 

and a shared last-level cache. If left unmanaged, the shared last- 

level cache can be vulnerable to timing-channel attacks. 

A security class is assigned to each application by the underly- 

ing OS, which might make these security class assignments based 

on user preferences. We assume the mechanism for assigning se- 

curity classes is secure and cannot be compromised by the attacker. 

The security classes form a hierarchical security policy, as shown 

in Figure 1. There are N security tiers, and each tier contains an 

arbitrary number of security classes. The security policy is defined 

by the following rule: 

• Information is allowed to flow from security class A to secu- 
rity class B if and only if A ∈ Tier i, B ∈ Tier j and i < j. 

Figure 2: Common security policies. 

 
The security policy has two implications. First, information may 

not flow between two security classes in the same security tier. 

This is useful for the use case where multiple mutually distrust- 

ing confidential applications (e.g., banking, medical) are running 

concurrently. Second, information is allowed to flow from a lower 

security tier to a higher security tier. This represents the use case 

where public applications (e.g., web browsing, search engine) are 

running together with confidential applications. Information is al- 

lowed to flow from public applications to confidential applications, 

but not the other way around. 

The security policy is general enough to support common use 

cases. For example, a government or military database system usu- 

ally employs the multilevel security (MLS) policy, which consists 

of four hierarchical levels. This MLS policy can be represented in 

our security policy by four security tiers with each tier containing 

one security class, as shown in Figure 2a. Our security policy can 

also represent the mobile scenario with two security tiers, as shown 

in Figure 2b. Tier 1 only contains one security class L, which is 

assigned to public applications; recall that a security class is not 

the same as an application. Multiple applications can share a single 

security class as long as they do not require protection against each 

other. Tier 2 contains 2 security classes, with each security class 

assigned to a different confidential application. 

Given that the security policy defines which information flows 

are allowed between security classes, the goal is to prevent disal- 

lowed information flows through cache timing channels. Specifi- 

cally, SecDCP prevents timing channel attacks that exploit cache 

interference between processes, including prime-probe attacks [11, 

9], evict-time attacks [9] and flush-reload attacks [5]. SecDCP does 

not consider timing channel attacks based on interference within a 

process, such as cache collision attacks [4]. 

SecDCP assumes a strong attacker model. The attacker is able to 

measure the timing of its own individual cache accesses. In addi- 

tion to side channel attacks, SecDCP also deals with covert channel 

attacks, in which a compromised application in a high security tier 

tries to leak information to another application in a low security 

tier. SecDCP assumes hardware counters are controlled by the OS 

or hypervisor and are not accessible by user processes. Hence, the 

attacker cannot infer the victim’s cache behavior by directly access- 

ing cache hardware counters. SecDCP does not consider physical 

side channel attacks through power [6] or sound [1]. 
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Figure 3: Two security classes. 

4. SECDCP DESIGN 

 Challenge 
Previous dynamic cache partitioning techniques are vulnerable 

to cache timing channel attacks, as follows. 

Partition size depends on the demand of confidential applica- 

tions. To decide the partition size, previous dynamic cache parti- 

tioning schemes consider the cache demands of all processes. This 

means the partition sizes can reveal the cache demand of each pro- 

cess. By observing the change in its own partition size, a public 

application is able to infer the run-time demand of a confidential 

application. 

Changing partition size is not strictly enforced. When chang- 

ing the cache partition size, previous dynamic cache partitioning 

methods [12, 17, 13] enforce the new partition size at replacement 

time. If the size of a cache partition decreases, its cache lines are 

not immediately evicted. Instead, they remain in the cache until 

some cache lines from another process replace them. This means 

the eviction of one process’s cache lines depends on other pro- 

cesses’ cache accesses—a vulnerability for timing channel attacks. 

Since dynamic cache partitioning is vulnerable to timing chan- 

nel attacks, prior secure partitioned cache designs have used static 

cache partitioning, incurring significant performance overhead. A 

natural question is whether we can achieve the benefits of both 

schemes. In this paper, we show that secure dynamic cache par- 

titioning is feasible under our security policy. 

We observe that the hierarchical security policy is inherently 

asymmetric. We only need to prevent information flow from con- 

fidential applications to public applications. Taking advantage of 

this asymmetry, we propose Secure Dynamic Cache Partitioning 

(SecDCP), which significantly improves the performance of static 

cache partitioning while meeting the security requirements. 

To illustrate the ideas of SecDCP, we will first describe SecDCP 

design for a simple hierarchy with two security classes. 

 SecDCP for Two Security Classes 
Consider the security policy in Figure 3. We assign security class 

H to the confidential application and security class L to the public 

application. The goal is to prevent information flow from H to 

L through cache timing channels. To achieve this goal, SecDCP 

follows a couple of design rules: 1) Partition size is independent of 

confidential applications. 2) Operations for changing partition size 

leak no information about confidential applications. 

We divide SecDCP into two parts: Partition Allocation Algo- 

rithm (PAA) and Partition Enforcement Mechanism (PEM). PAA 

is responsible for allocating the size of each partition at run time. 

PEM is responsible for enforcing the new partition size after PAA 

picks a new cache allocation. 

 Partition Allocation Algorithm (PAA) 

Unlike previous dynamic cache partitioning techniques in which 

the cache allocation is dependent on the demands of both L and H, 

PAA only uses the demand from L to allocate the partition size. We 

divide the time into epochs of length T . At the end of each epoch, 

20 

1 2 3 4 

Number of Cache Ways 

 
Figure 4: Generated miss curve by UMON. 

 
PAA allocates a new partition size based on the demand of L. Inside 

each epoch, we use utility monitors (UMON) [12] to collect the 

utility information of L. UMON generates miss curves similar to 

Figure 4. The miss curve is a function that maps the number of 

cache ways to the number of cache misses. Using the miss curve, 

we can calculate the gain for increasing the cache size as well as 

the loss for decreasing the cache size. Assume the total number of 

cache misses for L in an epoch is N and the current partition size 

for L is X ways, we define the gain and loss as follows: 

gain = [MISS(X ) − MISS(X + 1)]/N (1) 

loss = [MISS(X − 1) − MISS(X )]/N (2) 

MISS(X) means the number of cache misses with X cache ways. 

Gain indicates the percentage of cache misses for L that can be 

reduced when we increase L’s partition size by one cache way. Loss 

indicates the percentage of additional cache misses for L that will 

be introduced when we decrease L’s partition size by one cache 

way. 

The gain and loss parameters are fed into PAA. PAA defines two 
threshold values, thinc and thdec, to determine the new partition 

size. If the gain is larger than thinc, L’s partition size increases by 
one way. Otherwise, if the loss is smaller than thdec, L’s partition 
size decreases by one way. 

Note that PAA only considers the demand of L when allocat- 

ing the partition size. This design choice is made to prevent in- 

formation leakage from H to L. When L increases its partition 

size, H’s partition size decreases accordingly. Although H may 

suffer from the reduced partition size, overall system performance 

can still improve since L will get significant improvement (higher 

than thinc). To prevent unfairness and starvation, our default design 

always reserves one cache way for H. On the other hand, when L 

decreases its partition size, H’s partition size increases accordingly. 

This creates an opportunity for H to improve its performance with 

more cache ways, while the performance drop of the L partition is 

bounded (less than thdec). 

 Partition Enforcement Mechanism (PEM) 

After PAA allocates a new partition size, PEM enforces the new 

allocation in a way that leaks no information from H to L. A naive 

approach is to flush the entire cache way whenever a way is real- 

located to another security class. But flushing can introduce sig- 

nificant performance overhead. PEM improves the performance by 

treating increases and decreases to partition size differently. We as- 

sociate each cache line with a 1-bit identifier (ID) to indicate which 

security class fetched the cache line. When L’s partition size de- 

creases, PEM checks the ID and flushes all the cache lines that 

belong to L in the adjusted cache way before reallocating it to H. 

However, when L’s partition size increases, PEM does not flush the 

cache way that gets reallocated from H to L. As a result, H’s cache 
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lines in this cache way can be evicted by L’s cache lines, and H 

can learn about the cache accesses of L. However, this information 

flow is benign according to our security policy. The optimization 

improves the performance of H by allowing H to get cache hits in 

its cache lines in L’s partition until L evicts them. 

 Efficiency Discussion 
SecDCP dynamically partitions the cache at run time by utiliz- 

ing cache demand information from the public application, while 

previous dynamic cache partitioning schemes such as utility-based 

partitioning [12] use information from all applications to decide 

partition sizes. How can SecDCP make good partitioning decisions 

when it only sees information from one side? 

It is known that applications show phase behavior. To simplify 

analysis, we categorize application phases into cache-sensitive and 

cache-insensitive phases. Assume a confidential application is run- 

ning concurrently with a public application. The state of concurrent 

application phases, (PublicApp, ConfidentialApp), can be divided 

into four cases: (I, I), (I, S), (S, I), (S, S). Here I represents a 

cache-insensitive phase and S a cache-sensitive phase. We analyze 

performance case-by-case: 

(I, I): The cache partition size does not affect performance 

much, so SecDCP and utility-based partitioning achieve sim- 

ilar performance. 

(I, S): Both schemes allocate most of the cache to the con- 

fidential application because the public application does not 

need cache. 

(S, I): Utility-based partitioning will allocate most of the 

cache to the public application. SecDCP’s allocation will 

achieve the same outcome if the threshold is properly cho- 

sen. 

(S, S): Utility-based partitioning will find an allocation that 

benefits both applications the most, whereas SecDCP’s allo- 

cation is dependent on the threshold value. 

In a summary, SecDCP achieves almost the same performance 

as utility-based partitioning when the public application is cache- 

insensitive. For the other two cases, the performance of SecDCP 

relies on the accuracy of a threshold value. In our experiments, 

SecDCP uses the same threshold value (20%) across different bench- 

marks and achieves similar performance as utility-based partition- 

ing. Our analysis and experimental results indicate that using infor- 

mation from one side is enough for dynamic partitioning in many 

cases. 

 SecDCP for General Case 
We now describe SecDCP for a more general security policy as 

shown in Figure 1, where there are multiple security tiers. It may 

seem straightforward to extend SecDCP for a general security pol- 

icy, but this extension turns out to be non-trivial. 

 
Tier 3 

 
 

Tier 2 

 
 

Tier 1 

 

Figure 5: Security policy example. 

 
Insecure Designs. 

Without loss of generality, we discuss the insecure designs in the 

case of 3 security tiers, as shown in Figure 5. 

Case 1: Suppose L1 wants to increase its partition size. Mean- 
while, M1 wants to decrease its partition size and M2 wants to keep 
its partition size the same. A performance oriented algorithm tends 
to pick a cache way from M1 to reallocate to L1. If M2 knows L1 is 

cache-intensive, but observes that it does not lose any cache way, it 

can infer M1 may be decreasing its partition size. Hence, M2 can 
learn the run-time cache demand of M1. 

Case 2: Assume M1 wants to increase its partition size. M1 grad- 
ually takes cache ways from Hi where (1 <= i <= K3) until there is 

no available cache way in security tier 3. Now security class M2 
starts to request for larger partition size. However, M2 cannot get 
more cache ways because tier 3 has no extra cache ways. If M2 
knows that applications in tier 1 are cache-insensitive, then M2 can 
infer that a security class in tier 2 has high cache demand. 

The pitfalls can be summarized as follows: 1) Dynamic arbi- 

tration between incomparable security classes based on cache de- 

mand. 2) First-Come, First-Serve (FCFS) allocation. 

 

Secure Allocation Design. 
Our secure allocation design avoids the aforementioned pitfalls. 

We assume a general security policy that consists of N security tiers 

with each tier containing Ki incomparable security classes where 1 
<= i <= N. For the convenience of description, we use the notation 

Ci, j to denote the jth security class in security tier i. 
If a security class Ci, j wants to increase its partition size, PAA 

will first check security tier (i + 1). There are Ki+1 security classes 

in tier (i + 1). We assume each security class has P cache ways 
that can be reallocated to other security classes initially. There are 

Ki+1  P available cache ways for allocation in tier (i + 1). To avoid 
the FCFS allocation pitfall, PAA reserves certain number of cache 
ways for each incomparable security class. Since there are Ki in- 
comparable security classes in tier i, each security class in tier i can 

get at most Ki+1  P/Ki cache ways from tier (i + 1). Hence, PAA 
checks the reserved cache ways for security class Ci, j in tier (i + 1). 
If there exists one cache way that is currently occupied by a secu- 

rity class Ci′ , j′  where i′ > i, then this cache way can be reallocated 
to Ci, j . If multiple cache ways satisfy the condition, PAA picks one 
cache way using a strict round-robin policy, thereby avoiding the 
pitfall of dynamic arbitration based on cache demand. If no cache 

way satisfies the condition, PAA will then move to tier (i + 2) and 

 Partition Allocation Algorithm (PAA) 

For a general security policy, PAA uses UMON to track the cache 

demand of each security class separately. Using the allocation al- 

gorithm, PAA is able to figure out the change in partition size for 

each security class. However, a new problem arises when PAA tries 

to reallocate the partition size. In a general security policy, if one 

security class needs to increase its partition size, it can take a cache 

way from any security class that is in a higher tier in the security 

policy. We found that security vulnerabilities exist if PAA is not 

designed carefully. 

repeats the same procedure. The algorithm traverses through the 

security tiers from tier (i + 1) to tier N, and terminates when a tar- 
get cache way is found or the search reaches tier N. 

If a security class Ci, j wants to decrease its partition size, PAA 
will simply reallocates the extra cache way to one security class in 

tier (i + 1). If there are multiple security classes in tier (i + 1), PAA 
picks one security class using strict round-robin policy. 

 Partition Enforcement Mechanism (PEM) 

PEM does not flush the cache way when the partition size in- 

creases. However, when a partition size decreases, PEM needs to 

LK1
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Core count 2 / 4 

Core model 2GHz Out-of-Order, ARM ISA 

L1 caches Private, 32kB, 2-way set associative, split D/I 

L2 caches Shared, 1MB, 8-way set associative / Shared, 
2MB, 16-way set associative 

Memory 200-cycle latency, 8GB/s peak memory BW 

Table 1: System configuration. 

 
cache-insensitive astar, libquantum, gobmk, h264ref, hm- 

mer, sjeng 

cache-sensitive bzip2, mcf, soplex, xalan 

Table 2: Program categorization. 

carefully flush specific cache lines to avoid timing channel attacks. 

Assuming a security class Ci, j gives up one cache way to be reallo- 

cated to another security class Ci+1, j′ , PEM will check each cache 

line in the reallocated cache way. If the security class of a cache line 

is incomparable with or lower than Ci+1, j′ , this cache line needs to 

be flushed. 

5. EVALUATION 

 Experimental Methodology 
We use an architecture simulator, gem5[3], to evaluate the per- 

formance of SecDCP. We model a multicore system that is con- 

figured with private L1 caches and a unified shared L2 cache, as 

shown in Table 1. We ran multiprogram workloads that consist of 

SPEC CPU2006 programs. We fast-forward the simulation until 

every program in the workload has reached 1 billion instructions, 

after which the simulator starts detailed timing simulation. The 

simulation terminates when every program has run at least 250 mil- 

lion instructions. 

We use 10 SPEC CPU2006 programs to form our multiprogram 

workloads. We use profiling to categorize these programs [12], 
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Figure 6: Performance for SS workloads. 
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Figure 7: Performance for SI workloads. 

 
Static SecDCP LRU Utility 

as shown in Table 2. Cache-insensitive programs do not benefit 

significantly from cache size increase because they have few cache 

accesses or because their working set fits in a small cache size. In 

contrast, cache-sensitive programs can continuously benefit from 

increasing cache size up to the entire cache. For convenience, we 

mark cache-sensitive programs with the letter S and mark cache- 

insensitive programs with the letter I. We use weighted speedup as 

the metric to evaluate the performance. For a system with programs 

running concurrently, weighted speedup is defined as the sum of 

100 
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Figure 8: Performance for II workloads. 

each program’s IPC normalized to the IPC when the program is 

running by itself: 

Weighted Speedup = Σ(IPCi/SingleIPCi) (3) 

 Performance 
We first study the performance of SecDCP when there are two se- 

curity classes. We use the naming convention program1_program2 

for a workload, meaning that program1 belongs to L and program2 

belongs to H. We compare SecDCP with three other schemes. The 

first scheme is static partitioning, which statically divides the cache 

into two equally-sized partitions. The second scheme is no parti- 

tioning where the entire cache is managed using LRU replacement. 

The last scheme is utility-based partitioning [12] that dynamically 

partitions the cache using the cache demand of both programs. For 

our SecDCP scheme, we set the threshold value, thinc and thdec, 

to be both 20% in these experiments. Out of the four schemes, 

static partitioning and SecDCP are secure while no partitioning and 

utility-based partitioning are insecure. 

Figure 6 shows the results for SS workloads, which are mixes of 

two cache-sensitive programs. We normalize the weighted speedup 

of each scheme to that of static partitioning. For these workloads, 

SecDCP achieves 12.5% improvement over static partitioning on 

average. In some cases, the improvement can reach as much as 

40%. This is because SS workloads are cache-sensitive, requiring 

efficient utilization of the limited cache space. Static partitioning 

incurs high performance overhead since it cannot adapt the par- 

tition size to meet the changing cache demand of each program. 

SecDCP increases the partition size for L when the L program is 

able to improve its performance with larger partition size. On the 

other hand, SecDCP decreases the partition size for L when it will 

not hurt the performance of the L program by much, thus giving 

more cache space to the H program, which can opportunistically 

improve its performance. On average, SecDCP achieves similar 

performance to no partitioning and utility-based partitioning. 

Figure 7 shows the performance for SI workloads, which are ran- 

domly selected mixes of a cache-sensitive program and a cache- 
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insensitive program. On average, SecDCP achieves an 11.4% im- 

provement over static partitioning. For SI workloads, SecDCP will 

gradually reduce the partition size of the cache-insensitive pro- 

gram, greatly improving the performance of the cache-sensitive 

program. Utility-based partitioning can also achieve the same goal, 

which is why we see similar speedups between SecDCP and utility- 

based partitioning for each workload. We also see in some cases 

(e.g., bzi_lib) that SecDCP performs worse than static partitioning. 

This is because the threshold value we choose (i.e., 20%) does not 

match the cache demand of bzip2. In this workload, bzip2 keeps 

decreasing its partition size because the loss (defined in equation 2) 

is less than 20%. However, libquantum is a streaming program that 

cannot utilize the increasing cache size. System performance de- 

creases as a result. If we swap the programs (i.e., lib_bzi), bzip2 

gets most of the cache because libquantum gives up most of its 

cache ways. As the figure shows, SecDCP outperforms static par- 

titioning by 5% for lib_bzi. 

Figure 8 shows the performance for II workloads, in which both 

programs are cache-insensitive. Since the performance of the pro- 

gram does not depend much on cache size, all schemes perform 

similarly. 

To understand the impact of having more security classes, we 

also studied the performance of SecDCP with four cores. We use 

a 2MB, 16-way set associative L2 cache, shared by four programs. 

The security policy is the linear security policy shown in Figure 2a. 

We compare SecDCP with static partitioning. The static partition- 

ing scheme divides the cache into four partitions, each a four-way 

cache. We picked 32 four-program workloads that consist of SS, 

SI and II types (two programs from each category). The results 

show that SecDCP achieves 6.4% improvement over static parti- 

tioning on average. For quite a few benchmarks, the improvement 

can reach 20%. However, we do see some workloads for which 

SecDCP performs worse than static partitioning. This is again due 

to the imprecision of the threshold value (20%). 

 Threshold and Security Policies 
We tried different threshold values from the set {2%, 5%, 10%, 

15%, 20%, 25%}. We found the threshold value can affect the per- 

formance significantly for most workloads, hence picking a good 

threshold is important. By comparing against the profiling results 

for individual programs, we found that the optimal threshold value 

can be estimated based on the steepness of a program’s miss curve. 

For most workloads, a threshold value of 20% performs well, and 

on average is within 2.5% of the optimal threshold. 

To understand the impact of security policies, we studied perfor- 

mance under another policy shown in Figure 2b. In this case, the 

static cache partitioning scheme divides the cache into 3 partitions. 

The partition size for L is 8 cache ways because two programs share 

the partition, while the partition sizes for H1 and H2 are both 4 

cache ways. SecDCP achieves up to 21% and on average 3.3% im- 

provement over the static partitioning. The speedup is lower than 

that of the linear security policy, because allowing two public ap- 

plications to share a cache partition improves the performance of 

the baseline static partitioning. 

 

6. CONCLUSION 
We present SecDCP, a secure dynamic cache partitioning scheme 

that improves the performance of static cache partitioning while 

meeting the security requirements specified by a hierarchical secu- 

rity policy. SecDCP uses only the cache demand of public appli- 

cations to dynamically determine the cache partition size. SecDCP 

then enforces the new partition size securely and efficiently by only 

flushing cache lines when necessary. SecDCP also supports a non- 

trivial extension to general security policies. 
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