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Abstract—The Miller effect on the frequency response and the 

input and output impedances of feedback amplifiers may now be 

calculated using a new approach. Its foundation is the Feedback 

Decomposition Theorem, an extension of Miller's Theorem that 

was recently stated. By analysis and SPICE simulations, 

application results achieved using this method are compared to 

those of Miller's Theorem application, demonstrating its 

correctness. 

 
Index Terms—Circuit theory, feedback amplifiers, impedance, 

poles and zeros, simulation, two port methods. 

 

 
I. INTRODUCTION 

ILLER effect is the most popular application of Miller’s 

Theorem [1], mostly concerning the effect of feedback 

on input impedance and on frequency response of an amplifier. 

As known, this was first analyzed by J. M. Miller [2] for three- 

electrode vacuum tubes, but remains valid for all types of am- 

plifiers. The main reason of Miller effect’s popularity is the 

strong intuitive character of the “decomposition” of the feed- 

back network to the known two “reflected” networks, one to 

the input and one to the output of the main amplifier. Howev- 

er, the feedback amplifier characteristics determined by the 

usual Miller effect approach, based on Miller’s Theorem, have 

been proved inaccurate, leading to completely different ap- 

proaches [3] for attaining accurate calculations. 

It has been proved that, “although pole splitting occurs with 

the insertion of Miller capacitor, under certain conditions both 

poles could move to lower frequencies together” [4]. There- 

fore, it is important to accurately calculate both the dominant 

pole and the next pole, for confronting issues like transient 

response analysis and stability analysis of feedback amplifiers, 

“especially if a strong feedback loop is closed” [3]. However, 

the key point is to preserve the strong intuitive character of the 

“decomposition” of the feedback network into two networks, 

to the input and output of the main amplifier and be able to 

carry out calculations based on such an equivalent circuit. Be- 

sides gain frequency response, it is also important to accurate- 
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ly calculate both input and output impedances for 

impedance matching purposes. Thus, an equivalent 

circuit yielded from feedback network’s “decomposition” 

should permit such cal- culations. Several contributions 

[5], [6], [7], [8], warn about Miller’s Theorem use for the 

output impedance calculation, leading either to bypassing 

the problem through other calcula- tion methods, or to its 

calculation straight from the original circuit. Output 

impedance calculation, under the “feedback 

decomposition” concept, is claimed to be valid when 

using the Feedback Decomposition Theorem [9] and it 

remains to be confirmed by application. The Feedback 

Decomposition Theo- rem (FDT) [9], presented as 

evolution of Miller’s Theorem, yields a true equivalent to 

the original circuit, while retaining the Miller’s Theorem 

concept of decomposing the feedback network. 

The present contribution proposes a new method for the ac- 

curate calculation of Miller effect on the frequency 

response (pole and zeros determination) and on the input 

and output impedances of feedback amplifiers, based on 

the FDT. First, a brief presentation of the FDT is given 

for the cases of forward and reverse calculations, both for 

unilateral and bilateral basic amplifiers (Section II). 

Then, based on a generic single stage feedback amplifier, 

Miller effect on the frequency response is for the first 

time evaluated using both Miller’s Theorem and FDT, 

concluding that the FDT approach is more accurate 

(Section III). Miller effect on input and output 

impedances of a feedback amplifier is also considered for 

both circuits resulting after Miller’s Theorem and FDT 

applications. It is shown, by analysis and SPICE 

simulation, that the FDT approach pro- vides a more 

accurate input impedance calculation, while it is the only 

possible to provide reverse calculations, e.g. output 

impedance (Section IV). Section V summarizes the 

conclu- sions. 

 

II. THE FEEDBACK DECOMPOSITION THEOREM 

The Feedback Decomposition Theorem (FDT) aims to 

sim- plify feedback analysis by simplifying the four basic 

topolo- gies of single loop feedback amplifiers [9]. It is 

based on two- port theory and uses the notation of 

generalized χ-parameters found in [10]. 

FDT claims that if we have two linear two-port 

networks, A and B, interconnected in such a way to 

present the same gener- alized input independent 

variables and the same generalized 
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V1 V2 

Rs G1 

1 2 3 

Vs CM1 
Ri 

Ci CM2 
Ro 

gm*V1 

 

output independent variables, then the interconnection of A 

and B two-ports is equivalent to the connection of two Feed- 

back Decomposition One-ports (FDOs), O1 and O2, to the 

input and output ports of the A two-port, respectively. This 

equivalent representation is defined as the Feedback Decom- 

position Equivalent (FDE). The specific nature of  the two 

FDOs O1 and O2 depends on the bilateral/unilateral character 

of the A two-port and on the considered signal flow direction, 

as shown on Fig.1. The one-ports that contain no source are 

III. MILLER EFFECT ON GAIN TRANSFER FUNCTION 

A simple, generic feedback amplifier circuit that is used to 

study the effect of the feedback capacitance (known also as 

Miller capacitance), considered between input and output of a 

feedback amplifier, is shown in Fig. 2. 

According to the traditional approach of Miller’s Theorem 

application, Miller capacitance is decomposed into two capaci- 

tances CM1 and CM2 to the input and output, respectively, as 

shown in Fig. 3, with: 

given by: CM1  Cf 1 Av  (3), 


i , f    

   ii     ij 
1 

j
 

f 
(1) C

M 2 
 Cf 11/ Av  (4), 


i ,r   
   ii     ij 

1
i
 

r 

 


21 

 
 

 

(2), 


12 

 
 

where Av  V2 /V1 . 

Cf 

where i, j=1,2 with i≠j, and Af      , 
22  L 

Ar    
11  S 

with ij  (ij )  (ij ) and {z, y, h, g}. 

Note that, Af and Ar are given by FDT and they are part of 

FDOs expressions, so one does not have to analyze the circuit, 

prior to FDT’s application, in order to determine them. 

 
(a) 

 

 

 

 

 

Fig. 2. A generic single stage feedback amplifier. 

 

 
Fig. 3. The circuit of Fig. 2. after the application of Miller’s Theorem. 

Normally, AV should be the closed loop forward gain of the 

feedback amplifier, but this is not clearly stated in Miller’s 

Theorem [5], [1]. However, in most cases of Miller’s Theorem 

application, AV is assumed to be the dc open loop gain. The 

reason is that if the closed loop gain is calculated, it clearly 

depends on the feedback network -the feedback capacitor in 

this case- and this violates the validity condition of Miller’s 

Theorem, requiring an independent of the feedback network 

gain [1], [11], [12], [4]. 

Therefore, AV  gm Ro and substituting to (3) we have: 

CM1  Cf 1 gmRo 
while from (4) we have: 

CM 2  Cf 11/ gmRo 

(5), 

 
(6). 

Performing simple voltage divider logic calculations on the 

circuit of Fig. 3, we obtain voltage gain as: 

G  
V

2  
V

1  
V

2
 V

 V V V 
(7), 

 

(b) 
Fig. 1. (a) FDE’s special case for forward and reverse signal flow, if the A 

 
with 

s s 1 

V
1    

1
 

V
s 1 

R
s  sR (C  C   ) 

 

 
(8) 

two-port is bilateral, and for forward signal flow only, if the A two-port is 

unilateral. (b) FDE’s special case for reverse signal flow, if the A two-port is 

unilateral, also valid for forward calculations. 

 
 

and 

 
V2  



V1 

Ri 

gm Ro 

1 sRoCM 2 

s i M 1 
 
 

(9). 

Thus, substituting (8) and (9) to (7) we have: 

V1 V2 

Rs G1 

Vs Ri 
Ci 

Ro 

gm*V1    

A 

A 





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 R R 

 R 

  0 

1 

g 

   
g 

 m 

i 

 

G  
 1 g

m 
R

o  (10) y  
1

 (12), 

1 Rs / Ri  sRs (Ci  CM 1 ) 1 sRoCM 2 
1, f 

gm   Ro 
1 

1  Ro / sC f   gm   Ro      
or using (5) and (6): which is the connection of a resistor R1,f and a capacitor C1,f in 

G 
 1     sC g  R 

1
 

V
 1 R / R  sR C  C 1 g R  series, with   R  

1
 and   sC  f m o 

,
 

s i s i f m    o 

g R 
(11). 1, f 1 

m o 

1, f 1 

o 

  m    o  

1 sRoCf 11/ gm  Ro 
while the output one-port is: 

  1  

From (11), (10) and (9) we conclude that, using Miller’s 

Theorem, Miller effect on the calculated voltage gain is the 

y
2, f   

 
  1  g 

  m  

(13), 

g  R 
1

 sC g  R 1 shifting of the “input” pole and the appearance of an output 

pole. Note that (11) has no zeros. 

m o f m o 

which is the connection of a resistor R2,f and a capacitor C2,f in 
Now, applying FDT to analyze Miller effect on the (for-    sC g  R 1 

ward) voltage gain of the circuit of Fig. 2, we first interpret the 

circuit as a two-port connection, as shown in Fig. 4. 
B 

1 
series, with R2, f 1

 

m o 

and sC2, f  
f m o 

.
 

gm 

 

 

 

 

 

 
 
 

 

 
 

A 

Fig. 4. The circuit of Fig. 2 as a parallel-parallel connection of A and B two- 

ports. 

Then, applying the FDT for forward calculations, we calcu- 

late the Feedback Decomposition One-ports that have to be 

connected to the input and output of the basic amplifier, as [9]: 

 
Fig. 5. The circuit of Fig. 2 after the application of FDT, for forward calcula- 

tions. 

The equivalent circuit resulting from the application of the 

FDT, i.e. the FDE, is illustrated in Fig. 5. Following the same 

analysis method, we calculate the voltage gain by calculating 

the factors shown in (7), to give a clear idea of the input and 

output contribution to the transfer function. By simple voltage 

divider logic calculations on the circuit of Fig. 5, we obtain 

(14) (bottom of page) and (15): 
y   y     A and y   y    y  A -1 , 

V
2    g  R 

 
 

1 sR
2, f 

C
2, f 

 
 

(15). 
1, f 11   12         f 2, f 22   21         f V 

m     o 
1 sC R  R 

with A  
V

2   


y
21 and y  ( y )  ( y ) 

1 2, f 2, f o 

V
1 

y
22  yL 

ij ij    ij    Substituting (12) and (13)’s components to (14) and (15), 

(we use y-parameters due to the parallel-parallel connection of 

A and B two-ports). Applying two-port definitions and proper- 

we express (14) and (15) in terms of the components of the 

original circuit (Fig. 2), as in (16) (bottom of page) and (17): 

ties [10], we easily obtain Y-matrices for the feedback network 

and the basic amplifier, respectively: 

V 2    g R 1 s C f   / gm 



(17). 

1 1 sCf Ro 

Y   sC  
 1

 1, Y  
(sCi Ri 1) / Ri 0 

.
 Finally, from (7), (16) and (17), and after the 1 sC R fac- 

B f  
1 1 

 A  
g 



Then, in a straightforward way, we have: 

f     o 

tor cancellation from nominator and denominator (pole-zero 

cancellation), we have (18) (top of next page): 

A   
gm  sCf and finally the input one-port is: 

f
 sC 1/ R 

f o 

 

V1 





1 sR

1, f 
C

1, f 

 

 
(14) V
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R
s      

  
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R
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 
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 
 s

2
C C R R 

R 
s C1, f  1, f 

R 
1, f s  i    s  1, f     i 1, f     s 

i  

V1 




i  

1 sCf Ro 

 
 

(16) 
V
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 C R 1 R g  R 
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   C R   s
2
C C R R 
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 R 

m    o 

i 

sC 

f m o 

 

G    
V 2    g R 1 s C f   / gm  

(18), 
s 1

 Rs    s C R  C R 1 R g  R 
1

  C R   s
2
C C R R 

R  f     o f     s o m s i    s  f     i    o    s 

which is exactly the voltage gain if calculated directly from the 

original circuit of Fig. 2 [3]. 

Apart from the fact that Miller’s Theorem approach ignores 

the zero of the voltage gain, even the poles of the original cir- 

cuit are not accurately calculated as SPICE calculations prove. 

Using the same values as in [3] (Rs= 2kohms, Ri= 2kohms, Ci= 

100pF, gm=0.01, Ro=10kohms, and Cf=1pF), the simulation of 

the original circuit gives one zero at 10
10

 rad/s and two poles at 

-4.85086·10
6
 rad/s (dominant pole) and -2.06149·10

8
 rad/s. 

the basic amplifier is interpreted by Miller’s Theorem ap- 

proach, although with some inaccuracy, while Miller effect on 

the overall frequency response and on the input and output of 

the basic amplifier is not successfully interpreted. 

IV. MILLER EFFECT ON INPUT AND OUTPUT IMPEDANCE 

Following Miller’s Theorem approach we computed the in- 

put impedance (Fig. 3) to be: 
1 

We also performed a SPICE pole-zero analysis on the original 
Z

in 
 R

s 
 

R 
1

  s C  C 1 g R  (19) 

circuit to find the pole-zero contribution of the two factors 

present in (7), i.e. “input” and “output” contribution to cir- 

cuit’s poles and zeros. We found that the input contributes one 
zero at -1·10

8
 rad/s and two poles at -4.85086·10

6
 rad/s and 

i   i f m    o   

and the output impedance (short circuiting Vs and replacing Ro 

with an ideal test voltage source) to be: 
1 

-2.06149·10
8
 rad/s, while the output contributes with one zero 

at -1·10
10

 rad/s and one pole at -1·10
8
 rad/s, with an apparent 

Z
out  

 
sC

 
f 11/ gm Ro 

(20). 

pole-zero cancellation at -1·10
8
 rad/s. We verified these re- 

sults, by analyzing the original circuit, in terms of the input 

Based on the equivalent circuit of Fig. 5, we calculated the 

input impedance as: 

and output factors contribution, as implied by (7). 

On the other hand, SPICE simulation on the circuit of Mil- 
Zin   Rs 

R 
1

  sC 

1 

sC (g    R 
1

) 
 

 

(21), 

ler’s Theorem (Fig. 3) yields only two poles at -4.97512·10
6
 

rad/s (dominant pole) and -9.90099·10
7
 rad/s. Clearly, domi- 

nant pole is shifted by 2.6%, while the second pole is wrongly 

i i 1 

f o 

which we verified it as identical to the Zin 
from the original circuit of Fig. 2. 

 
calculated directly 

calculated as it presents 52% deviation from the original cir- 

cuit’s second pole, closer to the dominant pole. Their percent- 

age difference depends on the actual values of the original 

circuit [8]. But, while the dominant pole results from the Mil- 

ler effect on the input of the basic amplifier, as referred in (8), 

simulation on Fig. 3 circuit proved that the second pole does 

not result from the Miller effect on the output of the basic am- 

plifier as (9) implies. Moreover, there is a small difference 

For output impedance calculation, the circuit of Fig. 5 is not 

suitable. According to FDT, a reverse calculations equivalent 

circuit is needed, which in our case of a unilateral amplifier is 

the one depicted in Fig. 6. This is because if we had used a 

circuit like the one of Fig. 5, we would have made the input 

completely independent from the output, destroying the equiv- 

alence to the original circuit in reverse calculations [9]. 

between the simulated (9.90099·10
7
 rad/s) and the calculated 

8 

gm Y2,r 

from (9) (1.01·10 rad/s) second pole’s position. In fact, simu- 
7 

lation gives one zero at at -9.90099·10 rad/s and two poles, at 

-4.97512·10
6
 rad/s and -9.90099·10

7
 rad/s, contributed by the 

input, while the output contributes one zero at -9.90099·10
7
 

rad/s. As expected, the overall gain presented a pole-zero can- 

cellation at -9.90099·10
7
 rad/s. 

Finally, the simulation of the FDE circuit (Fig. 5) gives ex- 

actly the same results with the original circuit, both for the 

overall and the input and output pole-zero analysis. Of course, 

the simulation verified the pole-zero pair at -1·10
8
 rad/s, which 

is predicted by (16), (17), and (18), in the same way as in the 

simulation and analysis of the original circuit. Thus, using the 

FDT, there is no need to be cautious about any error analysis 

 

 

 

 

 
Fig. 6. The circuit of Fig. 2 after the application of FDT, for reverse calcula- 

tions. This circuit is referred to as the Feedback Decomposition Equivalent 

(FDE) for reverse calculations. 

So, applying FDT for reverse calculations to the circuit of 

Fig. 2, we add the output one-port to the output and leave the 

input circuit of the B two-port to the input. As described in [9], 

the output one-port is: 

as when using Miller’s Theorems [8]. 
Based on the above, the FDT approach yields an equivalent y

2,r 
  y22    y 21  Ar , with Ar    

y
12 

y  y and 

to the original circuit that leads to accurate determination of 

Miller effect on the input, the output and the overall voltage 

 
yij  ( yij )   ( yij ) . 

s 0 

s 0 

11 S 

gain, while Miller’s Theorem approach does not yield an 

equivalent circuit. Only Miller effect on the dominant pole of 
Then, in a straightforward way, we have: 

ArbDepGen 

Current 

0.01 
V1 3 V2 

1 2 

Rs 

2k 

Ri 

2k    Ci 

100p 

Cf 

1p 

C1 

1p V2 

5 

-gmV1 

-sCfV2 

C2 
R1    R2     100p 
2k  2k 

V1 

V2 

V 
V 
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i s i 

f i s m    i    s i    s    i     f 

f    i s i f     2 

 

 

Ar 
sRi RsCf 

 
 

Ri  Rs  sRi Rs (Ci  Cf ) 

 
, while the output one-port is: 

derived by the Miller’s Theorem approach has no relevance to 

the original circuit’s output impedance and consequently Mil- 
ler effect on the output impedance is neither accurately nor 

y  
sCf  (Ri  Rs  sCi Ri Rs )   

or
 

2,r
 R  R  sR R (C  C ) 

qualitatively represented. This is mainly due to the fact that the 

Miller’s Theorem application does not give an equivalent to 

y
2,r 


i s i    s i f 

1 
 

 1 1 

 
(22), 

the original circuit for reverse calculation. In fact, Miller’s 

Theorem does not discriminate between forward and reverse 

R 
1

  R 
1

  sC 


sCf 

calculation at all. Apart from verifying Zin and Zout to the ones 

resulting directly from the original circuit of Fig. 2, we per- 
which is the connection of a capacitor C1=C1,f in series to the 

parallel connection of two resistors R1= Ri, R2= Rs and a capac- 

itor C2=Ci , as depicted on Fig. 6. 
 

 
Fig. 7. The input impedance of the circuit of Fig. 2 simulated, using the origi- 

nal circuit and the circuits derived from the application of Miller’s Theorem 

and FDT. Maximum difference of about 1.2% between the original and Miller 

circuit’s input impedances. 
 

Fig. 8. The output impedance of the circuit of Fig. 2 simulated, using the 

original circuit and the ones derived from the application of Miller’s Theorem 

and FDT. 

Based on the equivalent circuit of Fig. 6, we calculated the 

output impedance as follows: 
Z  Y   

1
  ( y  y   )

1
 , with y  g V /V . 

formed SPICE simulation as well (using again the same values 

-shown on Fig. 6- as in simulations of section III). Obtained 

results confirming the above are shown in Fig. 7 and Fig. 8. 

 
V. CONCLUSION 

The following conclusions emerge: 

1. FDT approach gives an equivalent to the original circuit 

that leads to accurate determination of Miller effect on the 

input, output and overall voltage gain. 

2. Only Miller effect on the dominant pole of the basic am- 

plifier is interpreted by Miller’s Theorem approach, although 

with some inaccuracy. 

3. Miller effect on input and output impedances is accurate- 

ly derived by the FDT approach, providing an equivalent cir- 

cuit for both forward and reverse calculations. On the other 

hand, Miller’s Theorem approach provides only an approxi- 

mate calculation of the input impedance, while fails to estimate 

output impedance. 
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