
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

219

The PARSEC Benchmark Suite:
Architectural Implications and Characterization

Ms.Suchitra Mishra1*, Mr.Narottam Sahu2

1*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

suchitramishra@thenalanda.com*, narottam@thenalanda.com

ABSTRACT

The Princeton Application Repository for Shared-Memory

Computers (PAR-SEC), a benchmark suite for research of

Chip-Multiprocessors, is introduced and described in this

work (CMPs). Multiprocessor benchmarks have previously

been tested using a small selection of synchronisation

methods and high-performance computing applications.

Emerging applications in recognition, mining, and synthesis

(RMS), as well as systems applications that resemble massive,

multi-threaded commercial programmes, are all included in

PARSEC. The benchmark suite is heterogeneous in terms of

working set, localization, data sharing, syn- chronization, and

off-chip traffic, as demonstrated by our characterization. The

public can now access the benchmark collection.

Categories and Subject Descriptors
D.0 [Software]: [benchmark suite]

General Terms
Performance, Measurement, Experimentation

Keywords
benchmark suite, performance measurement, multi-threading,
shared-memory computers

1. INTRODUCTION
Benchmarking is the quantitative foundation of computer
architecture research. Program execution time is the only
accurate way to measure performance[18]. Without a pro-
gram selection that provides a representative snapshot of the
target application space, performance results can be mis-
leading and no valid conclusions may be drawn from an ex-
periment outcome. CMPs require a disruptive change in or- der
for programs to benefit from their full potential. Future
applications will have to be parallel, but due to the lack of a
representative, multi-threaded benchmark suite most scien-
tists were forced to fall back to existing benchmarks. This
usually meant the use of older High-Performance Comput- ing
(HPC) workloads, smaller suites with only few programs or
unparallelized benchmarks. We consider this trend ex- tremely
dangerous for the whole discipline. Representative conclusions
require representative experiments and, as we argue in this
paper, existing benchmark suites cannot be considered
adequate to describe future CMP applications.

Large processor manufacturers have already reacted and de-
veloped their own, internal collections of workloads. An ex-
ample is the Intel RMS benchmark suite[14]. However, these

 suites often include proprietary code and are not
publicly available. To address this problem, we
created the PAR- SEC benchmark suite in
collaboration with Intel Corpora- tion. It includes
not only a number of important appli- cations
from the RMS suite but also several leading-edge
applications from Princeton University, Stanford
University and the open-source domain. The goal
is to create a suite of emerging workloads that
can drive CMP research.

This paper makes three contributions:

We identify shortcomings of commonly used
bench- mark suites and explain why they
should not be used to evaluate CMPs.

We present and characterize PARSEC, a
new bench- mark suite for CMPs that is
diverse enough in order to allow
representative conclusions.

Based on our characterization of PARSEC,
we analyze what properties future CMPs
must have in order to be able to deliver
scalable performance for emerging
applications. In particular, our
understanding of the behavior of future
workloads allows us to quantify how CMPs
must be built in order to mitigate the
effects of the memory wall on the next
generation of programs.

In Section 2 we describe why existing benchmark
suites can- not be considered adequate to
describe future CMP appli- cations. In Section 3,

•

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

220

we present the PARSEC benchmark suite and
explain how it avoids the shortcomings of other
collections of benchmarks. The methodology
which we use to characterize our workloads is
presented in Section 4. In Sections 5 to 8, we
analyze the parallelization, working sets,
communication behavior and off-chip traffic of
the bench- mark programs. We conclude our
study in Section 9.

2. MOTIVATION
The goal of this work is to define a benchmark suite
that can be used to design the next generation of
processors. In this section, we first present the
requirements for such a suite. We then discuss
how the existing benchmarks fail to meet these
requirements.

Multi-threaded Applications Shared-memory CMPs are already
ubiquitous. The trend for future processors is to deliver large
performance improvements through increasing core counts on
CMPs while only provid- ing modest serial performance
improvements. Conse- quently, applications that require additional
process- ing power will need to be parallel.

Emerging Workloads Rapidly increasing processing power
is enabling a new class of applications whose compu-
tational requirements were beyond the capabilities of
the earlier generation of processors[14]. Such appli-
cations are significantly different from earlier applica-
tions (see Section 3). Future processors will be de-
signed to meet the demands of these emerging appli-
cations and a benchmark suite should represent them.

Diverse Applications are increasingly diverse, run on a va-
riety of platforms and accommodate different usage
models. They include both interactive applications
like computer games, offline applications like data min-
ing programs and programs with different paralleliza-
tion models. Specialized collections of benchmarks can
be used to study some of these areas in more detail,
but decisions about general-purpose processors should
be based on a diverse set of applications. While a truly
representative suite is impossible to create, reasonable
effort should be made to maximize the diversity of the
program selection. The number of benchmarks must
be large enough to capture a sufficient amount of char-
acteristics of the target application space.

Employ State-of-Art Techniques A number of applica-
tion domains have changed dramatically over the last
decade and use very different algorithms and tech-
niques. Visual applications for example have started
to increasingly integrate physics simulations to gener-
ate more realistic animations[20]. A benchmark should
not only represent emerging applications but also use
state-of-art techniques.

Support Research A benchmark suite intended for research
has additional requirements compared to one used for
benchmarking real machines alone. Benchmark suites
intended for research usually go beyond pure scoring
systems and provide infrastructure to instrument, ma-
nipulate, and perform detailed simulations of the in-
cluded programs in an efficient manner.

 Limitations of Existing Benchmark Suites
In the remaining part of this section we analyze how existing
benchmark suites fall short of the presented requirements
and must thus be considered unsuitable for evaluating CMP
performance.

SPLASH-2 SPLASH-2 is a suite composed of multi-threaded
applications[44] and hence seems to be an ideal candi- date to
measure performance of CMPs. However, its program collection is
skewed towards HPC and graph-
ics programs. It thus does not include parallelization models such
as the pipeline model which are used in other application areas.
SPLASH-2 should further- more not be considered state-of-art
anymore. Barnes

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

221

for example implements the Barnes-Hut
algorithm for N-body simulation[8]. For
galaxy simulations it has largely been
superseded by the TreeSPH[19] method,
which can also account for mass such as
dark matter which is not concentrated in
bodies. However, even for pure N-body
simulation barnes must be consid- ered
outdated. In 1995 Xu proposed a hybrid
algo- rithm which combines the
hierarchical tree algorithm and the Fourier-
based Particle-Mesh (PM) method to the
superior TreePM method[45]. Our analysis
shows that similar issues exist for a number
of other applica- tions of the suite including
raytrace and radiosity.

SPEC CPU2006 and OMP2001 SPEC CPU2006 and
SPEC OMP2001 are two of the largest and
most signif- icant collections of benchmarks.
They provide a snap- shot of current
scientific and engineering applications.
Computer architecture research, however,
commonly focuses on the near future and
should thus also con- sider emerging
applications. Workloads such as sys- tems
programs and parallelization models which
em- ploy the producer-consumer model are
not included. SPEC CPU2006 is furthermore a
suite of serial pro- grams that is not intended
for studies of parallel ma- chines.

Other Benchmark Suites Besides these major
benchmark suites, several smaller suites
exist. They were usually designed to study a
specific program area and are thus limited to
a single application domain. Therefore they
usually include a smaller set of applications
than a di- verse benchmark suite typically
offers. Due to these limitations they are
commonly not used for scientific studies
which do not restrict themselves to the cov-
ered application domain. Examples for these
types of benchmark suites are
ALPBench[25], BioParallel[22],
MediaBench[1], NU-MineBench[23] and PhysicsBench[46].
Because of their different focus we do not
discuss these suites in more detail.

3. THE PARSEC BENCHMARK SUITE
One of the goals of the PARSEC suite was to
assemble a program selection that is large and
diverse enough to be sufficiently representative
for scientific studies. It consists of 9 applications
and 3 kernels which were chosen from a wide
range of application domains. In Table 1 we
present a qualitative summary of their key
characteristics. PARSEC workloads were selected
to include different combinations of parallel
models, machine requirements and runtime
behav- iors.

PARSEC meets all the requirements outlined in Section 2.1:

• Each of the applications has been parallelized.

The PARSEC benchmark suite is not skewed towards
HPC programs, which are abundant but represent only
a niche. It focuses on emerging workloads. The algo-
rithms these programs implement are usually consid-
ered useful, but their computational demands are pro-
hibitively high on contemporary platforms. As more
powerful processors become available in the near fu-
ture, they are likely to proliferate rapidly.

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

222

Program Application Domain

Parallelization
Working Set

Data Usage
Model Granularity Sharing Exchange

blackscholes Financial Analysis data-parallel coarse small low low
bodytrack Computer Vision data-parallel medium medium high medium
canneal Engineering unstructured fine unbounded high high
dedup Enterprise Storage pipeline medium unbounded high high
facesim Animation data-parallel coarse large low medium
ferret Similarity Search pipeline medium unbounded high high
fluidanimate Animation data-parallel fine large low medium
freqmine Data Mining data-parallel medium unbounded high medium
streamcluster Data Mining data-parallel medium medium low medium
swaptions Financial Analysis data-parallel coarse medium low low
vips Media Processing data-parallel coarse medium low medium
x264 Media Processing pipeline coarse medium high high

Table 1: Qualitative summary of the inherent key characteristics of PARSEC benchmarks. Working sets
and data usage patterns are explained and quantified in later sections. The pipeline model is a data-parallel
model which also uses a functional partitioning. PARSEC workloads were chosen to cover different application
domains, parallel models and runtime behaviors.

The workloads are diverse and were chosen from many
different areas such as computer vision, media pro-
cessing, computational finance, enterprise servers and
animation physics.

Each of the applications chosen represents the state-
of-art technique in its area.

PARSEC supports computer architecture research in
a number of ways. The most important one is that for
each workload six input sets with different properties
are defined. Three of these inputs are suitable for mi-
croarchitectural simulation. We explain the different
types of input sets in more detail in Section 3.1.

 Input Sets
PARSEC defines six input sets for each benchmark:

inputs most closely. The remaining input sets can be con-
sidered coarser approximations which sacrifice accuracy for
tractability. Table 2 shows a breakdown of instructions and
synchronization primitives of the simlarge input set which
we used for the characterization study.

 Workloads
The following workloads are part of the PARSEC suite:

 blackscholes
The blackscholes application is an Intel RMS benchmark.
It calculates the prices for a portfolio of European options
analytically with the Black-Scholes partial differential equa-
tion (PDE)[10]

∂V
+

1 2 2 ∂2V ∂V

test A very small input set to test the basic functionality ∂t 2
ς S

 ∂S2 + rS
∂S

− rV = 0

of the program.

simdev A very small input set which guarantees basic pro-
gram behavior similar to the real behavior, intended
for simulator test and development.

simsmall, simmedium and simlarge Input sets of different
sizes suitable for microarchitectural studies with sim-
ulators.

native A large input set intended for native execution.

test and simdev are merely intended for testing and devel-
opment and should not be used for scientific studies. The
three simulator inputs for studies vary in size, but the gen-
eral trend is that larger input sets contain bigger working
sets and more parallelism. Finally, the native input set is
intended for performance measurements on real machines
and exceeds the computational demands which are gener-
ally considered feasible for simulation by orders of magni-
tude. From a scientific point of view, the native input set is
the most interesting one because it resembles real program

where V is an option on the underlying S with volatility ς at
time t if the constant interest rate is r. There is no closed-
form expression for the Black-Scholes equation and as such
it must be computed numerically[21]. The blackscholes
benchmark was chosen to represent the wide field of ana-
lytic PDE solvers in general and their application in com-
putational finance in particular. The program is limited by
the amount of floating-point calculations a processor can
perform.

blackscholes stores the portfolio with numOptions deriva-
tives in array OptionData. The program includes file option-
Data.txt which provides the initialization and control ref-
erence values for 1,000 options which are stored in array
data init. The initialization data is replicated if necessary
to obtain enough derivatives for the benchmark.

The program divides the portfolio into a number of work
units equal to the number of threads and processes them
concurrently. Each thread iterates through all derivatives in
its contingent and calls function BlkSchlsEqEuroNoDiv for
each of them to compute its price. If error checking was

•

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

223

t,m

i=1

t,m

t,m

P

Program Problem Size

Instructions (Billions) Synchronization Primitives
Total FLOPS Reads Writes Locks Barriers Conditions

blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0
bodytrack 4 frames, 4,000 particles 14.03 4.22 3.63 0.95 114,621 619 2,042
canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0
dedup 184 MB data 37.1 0 11.71 3.13 158,979 0 1,619
facesim 1 frame,

372,126 tetrahedra
29.90 9.10 10.05 4.29 14,541 0 3,137

ferret 256 queries,
34,973 images

23.97 4.51 7.49 1.18 345,778 0 1255

fluidanimate 5 frames,
300,000 particles

14.06 2.49 4.80 1.15 17,771,909 0 0

freqmine 990,000 transactions 33.45 0.00 11.31 5.24 990,025 0 0
streamcluster 16,384 points per block,

1 block
22.12 11.6 9.42 0.06 191 129,600 127

swaptions 64 swaptions,
20,000 simulations

14.11 2.62 5.08 1.16 23 0 0

vips 1 image,
2662 × 5500 pixels

31.21 4.79 6.71 1.63 33,586 0 6,361

x264 128 frames,
640 × 360 pixels

32.43 8.76 9.01 3.11 16,767 0 1,056

Table 2: Breakdown of instructions and synchronization primitives for input set simlarge on a system with
8 cores. All numbers are totals across all threads. Numbers for synchronization primitives also include
primitives in system libraries. ’Locks’ and ’Barriers’ are all lock- resp. barrier-based synchronizations,
’Conditions’ are all waits on condition variables.

enabled at compile time it also compares the result with the
reference price.

The input sets for blackscholes are sized as follows:

• test: 1 option

• simdev: 16 options

• simsmall: 4,096 options

• simmedium: 16,384 options

• simlarge: 65,536 options

1. The image features of observation Zt are extracted.
The features will be used to compute the likelihood of
a given pose in the annealed particle filter.

2. Every time step t the filter makes an annealing run
through all M annealing layers, starting with layer
m = M .

3. Each layer m uses a set of N unweighted particles
which are the result of the previous filter update step
to begin with.

S = {((1))...((N))}.

• native: 10,000,000 options
t,m

()

st,m st,m

Each particle s
i
 is an instance of the multi-variate

 bodytrack
The bodytrack computer vision application is an Intel RMS

model configuration X which encodes the location and
state of the tracked body.

workload which tracks a 3D pose of a marker-less human 4. Each particle (i) (i)

body with multiple cameras through an image sequence[13,
6]. bodytrack employs an annealed particle filter to track
the pose using edges and the foreground silhouette as im-
age features, based on a 10 segment 3D kinematic tree body
model. These two image features were chosen because they

st,m is then assigned a weight πt,m by us-
ing weighting function ω(Zt, X) corresponding to the
likelihood of X given the image features in Zt scaled
by an annealing level factor:

exhibit a high degree of invariance under a wide range of (i) (i)

conditions and because they are easy to extract. An an-
nealed particle filter was employed in order to be able to
search high dimensional configuration spaces without hav-
ing to rely on any assumptions of the tracked body such as
the existence of markers or constrained movements. This

πt,m ∝ ω(Zt, st,m).

The weights are normalized so that
N

The result is the weighted particle set

(i)
t,m

= 1.

benchmark was included due to the increasing significance π (1) (1) (N) (N)

of computer vision algorithms in areas such as video surveil-
lance, character animation and computer interfaces.

St,m = {(st,m, πt,m)...(st,m, πt,m)}.

5. N particles are randomly drawn from set S
π

with

For every frame set Zt of the input videos at time step t, a probability equal to their weight π(i) to obtain the
the bodytrack benchmark executes the following steps: temporary weighted particle set

π

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

224

×

t,0

t,m

t,m

t st,0 t,0

t,m

st,m t,m st,m t,m

¯π

t,m

Each particle

= {(¯(1) , π(1))...(¯(N), π(N))}.

s̄(i) is then used to produce particle

bodytrack has a persistent thread pool which is implemented
in class WorkPoolPthread. The main thread executes the
program and sends a task to the thread pool with method
SignalCmd whenever it reaches a parallel kernel. It resumes
execution of the program as soon as it receives the result
from the worker threads. Possible tasks are encoded by enu-

(i) (i) meration threadCommands in class WorkPoolPthread. The
st,m−1 = s̄t,m + Bm

where Bm is a multi-variate Gaussian random vari-

program has three parallel kernels:

able. The result is particle set S
π
 which is used to

initialize layer m − 1.
t,m−1 Edge detection (Step 1) bodytrack employs a gradient

based edge detection mask to find edges. The result

6. The process is repeated until all layers have been pro-
cessed and the final particle set S

π
 has been com-

is compared against a threshold to eliminate spuri-
ous edges. Edge detection is implemented in function

puted.
t,0 GradientMagThreshold. The output of this kernel will

be further refined before it is used to compute the par-
π
t,0 is used to compute the estimated model configu- ticle weights.

ration χt for time step t by calculating the weighted
average of all configuration instances:

N

Edge smoothing (Step 1) A separable Gaussian filter of
size 7 7 pixels is used to smooth the edges in function
GaussianBlur. The result is remapped between 0 and
1 to produce a pixel map in which the value of each

χ =
X

(i) π(i).

8. The set St+1,M is then produced from S
π
 using

one to filter image columns.

Calculate particle weights (Step 4) This kernel evalu-
 (i) (i) ates the foreground silhouette and the image edges pro-

st+1,M = st,0 + B0.

In the subsequent time step t+1 the set St+1,M is used
to initialize layer M.

The likelihood ω(Zt, s
(i)

) which is used to determine the

particle weights π(i) is computed by projecting the geom-
etry of the human body model into the image observations
Zt for each camera and determining the error based on the
image features. The likelihood is a measure of the 3D body
model alignment with the foreground and edges in the im-
ages. The body model consists of conic cylinders to rep-
resent 10 body parts 2 for each limb plus the torso and
the head. Each cylinder is represented by a length and a
radius for each end. The body parts are assembled into a
kinematic tree based upon the joint angles. Each particle
represents the set of joint angles plus a global translation.
To evaluate the likelihood of a given particle, the geometry
of the body model is first built in 3D space given the angles
and translation. Next, each 3D body part is projected onto
each of the 2D images as a quadrilateral. A likelihood value
is then computed based on the two image features the fore-
ground map and the edge distance map. To compute the
foreground term, samples are taken within the interior of
each 2D body part projection and compared with the bi-
nary foreground map images. Samples that correspond to
foreground increase the likelihood while samples that corre-
spond to background are penalized. The edge map gives a
measure of the distance from an edge in the image - values
closer to an edge have a higher value. To compute the edge
term samples are taken along the axis-parallel edges of each
2D body part projection and the edge map values at each
sample are summed together. In this way, samples that are
closer to edges in the images increase the likelihood while
samples farther from edges are penalized.

duced earlier to compute the weights for the particles.
This kernel is executed once for every annealing layer
during every time step, making it the computationally
most intensive part of the body tracker.

The parallel kernels use tickets to distribute the work among
threads balance the load dynamically. The ticketing mecha-
nism is implemented in class TicketDispenser and behaves
like a shared counter.

The input sets for bodytrack are defined as follows:

• test: 4 cameras, 1 frame, 5 particles, 1 annealing layer

simdev: 4 cameras, 1 frame, 100 particles, 3 annealing
layers

simsmall: 4 cameras, 1 frame, 1,000 particles, 5 an-
nealing layers

simmedium: 4 cameras, 2 frames, 2,000 particles, 5 an-
nealing layers

simlarge: 4 cameras, 4 frames, 4,000 particles, 5 an-
nealing layers

native: 4 cameras, 261 frames, 4,000 particles, 5 an-
nealing layers

 canneal

This kernel was developed by Princeton University. It uses
cache-aware simulated annealing (SA) to minimize the rout-
ing cost of a chip design[7]. SA is a common method to
approximate the global optimum in a large search space.
Canneal pseudo-randomly picks pairs of elements and tries

7. S

•

•

•

•

•

i=1

pixel is related to its distance from an edge. The kernel
has two parallel phases, one to filter image rows and

S

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

225

to swap them. To increase data reuse, the algorithm dis-
cards only one element during each iteration which effec-
tively reduces cache capacity misses. The SA method ac-
cepts swaps which increase the routing cost with a certain
probability to make an escape from local optima possible.
This probability continuously decreases during runtime to
allow the design to converge. The program was included
in the PARSEC program selection to represent engineering
workloads, for the fine-grained parallelism with its lock-free
synchronization techniques and due to its pseudo-random
worst-case memory access pattern.

canneal uses a very aggressive synchronization strategy that
is based on data race recovery instead of avoidance. Pointers
to the elements are dereferenced and swapped atomically,
but no locks are held while a potential swap is evaluated.
This can cause disadvantageous swaps if one of the relevant
elements has been replaced by another thread during that
time. This equals a higher effective probability to accept
swaps which increase the routing cost, and the SA method
automatically recovers from it. The swap operation employs
lock-free synchronization which is implemented with atomic
instructions. An alternative implementation which relied
on conventional locks turned out to be too inefficient due
to excessive locking overhead. The synchronization routines
with the atomic instructions are taken from the BSD kernel.
Support for most new architectures can be added easily by
copying the correct header file from the BSD kernel sources.

The annealing algorithm is implemented in the Run function
of the annealer thread class. Each thread uses the func-
tion get random element to pseudo-randomly pick one new
netlist element per iteration with a Mersenne Twister[31].
calculate delta routing cost is called to compute the
change of the total routing cost if the two elements are
swapped. accept move evaluates the change in cost and the
current temperature and decides whether the change is to be
committed. Finally, accepted swaps are executed by calling
swap locations.

canneal implements an AtomicPtr class which encapsulates
a shared pointer to the location of a netlist element. The
pointer is atomically accessed and modified with the Get
and Set functions offered by the class. A special Swap mem-
ber function executes an atomic swap of two encapsulated
pointers. If an access is currently in progress the functions
spin until the operation could be completed. The implemen-
tation of Swap imposes a partial order to avoid deadlocks by
processing the pointer at the lower memory location first.

We provide the following input sets for canneal:

test: 5 swaps per temperature step, 100◦ start tem-
perature, 10 netlist elements

simdev: 100 swaps per temperature step, 300◦ start
temperature, 100 netlist elements

simsmall: 10,000 swaps per temperature step, 2, 000◦
start temperature, 100,000 netlist elements

simmedium: 15,000 swaps per temperature step, 2, 000◦
start temperature, 200,000 netlist elements

simlarge: 15,000 swaps per temperature step, 2, 000◦
start temperature, 400,000 netlist elements

native: 15,000 swaps per temperature step, 2, 000◦
start temperature, 2,500,000 netlist elements

 dedup
The dedup kernel was developed by Princeton University.
It compresses a data stream with a combination of global
compression and local compression in order to achieve high
compression ratios. Such a compression is called ’dedupli-
cation’. The reason for the inclusion of this kernel is that
deduplication has become a mainstream method to com-
press storage footprints for new-generation backup storage
systems[36] and to compress communication data for new-
generation bandwidth optimized networking appliances[39].

The kernel uses a pipelined programming model to paral-
lelize the compression to mimic real-world implementations.
There are five pipeline stages the intermediate three of which
are parallel. In the first stage, dedup reads the input stream
and breaks it up into coarse-grained chunks to get indepen-
dent work units for the threads. The second stage anchors
each chunk into fine-grained small segments with rolling fin-
gerprinting[29, 11]. The third pipeline stage computes a
hash value for each data segment. The fourth stage com-
presses each data segment with the Ziv-Lempel algorithm
and builds a global hash table that maps hash values to
data. The final stage assembles the deduplicated output
stream consisting of hash values and compressed data seg-
ments.

Anchoring is a method which identifies brief sequences in a
data stream that are identical with sufficiently high prob-
ability. It uses fast Rabin-Karp fingerprints[24] to detect
identity. The data is then broken up into two separate
blocks at the determined location. This method ensures
that fragmenting a data stream is unlikely to obscure du-
plicate sequences since duplicates are identified on a block
basis.

dedup uses a separate thread pool for each parallel pipeline
stage. Each thread pool should at least have a number of
threads equal to the number of available cores to allow the
system to fully work on any stage should the need arise.
The operating system scheduler is responsible for a thread
schedule which will maximize the overall throughput of the
pipeline. In order to avoid lock contention, the number of
queues is scaled with the number of threads, with a small
group of threads sharing an input and output queue at a
time.

dedup employs the following five kernels, one for each pipeline
stage:

Coarse-grained fragmentation This serial kernel takes

the input stream and breaks it up into work units
which can be processed independently from each other
by the parallel pipeline stages of dedup. It is imple-
mented in function DataProcess. First, the kernel
reads the input file from disk. It then determines the
locations where the data is to be split up by jumping a
fixed length in the buffer for each chunk. The resulting

•

•

•

•

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

226

data blocks are enqueued in order to be further refined
by the subsequent stage.

Fine-grained fragmentation This parallel kernel uses Rabin-

Karp fingerprints to break a coarse-grained data chunk
up into fine-grained fragments. It scans each input
block starting from the beginning. An anchor is found
if the lowest 12 bits of the Rabin-Karp hash-sum are 0.
The data is then split up at the location of the anchor.
On average, this produces blocks of size 212/8 = 512
bytes. The fine-grained data blocks are sent to the
subsequent pipeline stage to compute their checksum.
This kernel is implemented in function FindAllAnchor.

Hash computation To uniquely identify a fine-grained data

block, this parallel kernel computes the SHA1 check-
sum of each chunk and checks for duplicate blocks with
the use of a global database. It is implemented in func-
tion ChunkProcess. A hash table which is indexed
with the SHA1 sum serves as the database. Each
bucket of the hash table is associated with an inde-
pendent lock in order to synchronize accesses. The
large number of buckets and therefore locks makes the
probability of lock contention very low in practice.

Once the SHA1 sum of a data block is available, the
kernel checks whether a corresponding entry already
exists in the database. If no entry could be found, the
data block is added to the hash table and sent to the
compression stage. If an entry already exists the block
is classified as a duplicate. The compression stage is
omitted and the block is sent directly to the pipeline
stage which assembles the output stream.

Compression This kernel compresses data blocks in par-

allel. It is implemented in function Compress. Once
the compressed image of a data block is available it
is added to the database and the corresponding data
block is sent to the next pipeline stage. Every data
block is compressed only once because the previous
stage does not send duplicates to the compression stage.

Assemble output stream This serial kernel reorders the

data blocks and produces a compressed output stream.
It is implemented in the SendBlock function. The
stages which fragment the input stream into fine-grained
data blocks add sequence numbers to allow a recon-
struction of the original order. Because data fragmen-
tation occurs in two different pipeline stages, two lev-
els of sequence numbers have to be considered - one
for each granularity level. SendBlock uses a search
tree for the first level and a heap for the second level.
The search tree allows rapid searches for the correct
heap corresponding to the current first-level sequence
number. For second-level sequence numbers only the
minimum has to be found and hence a heap is used.

Once the next data block in the sequence becomes
available it is removed from the reordering structures.
If it has not been written to the output stream yet,
its compressed image is emitted. Otherwise it is a du-
plicate and only its SHA1 signature is written as a
placeholder. The kernel uses the global hash table to
keep track of the output status of each data block.

Each input for dedup is an archive which contains a selection
of files. The archives have the following sizes:

• test: 10 KB

• simdev: 1.1 MB

• simsmall: 10 MB

• simmedium: 31 MB

• simlarge: 184 MB

• native: 672 MB

 facesim
This Intel RMS application was originally developed by Stan-
ford University. It takes a model of a human face and a time
sequence of muscle activations and computes a visually real-
istic animation of the modeled face by simulating the under-
lying physics[38, 40]. The goal is to create a visually realis-
tic result. Certain effects such as inertial movements would
have only a small visible effect and are not simulated[20].
The workload was included in the benchmark suite because
an increasing number of computer games and other forms
of animation employ physical simulation to create more re-
alistic virtual environment. Human faces in particular are
observed with more attention from users than other details
of a virtual world, making their realistic presentation a key
element for animations.

The parallelization uses a static partitioning of the mesh.
Data that spans nodes belonging to more than one parti-
tion is replicated. Every time step the partitions process
all elements that contain at least one node owned by the
particle, but only results for nodes which are owned by the
partition are written.

The iteration which computes the state of the face mesh at
the end of each iteration is implemented in function Advance -
One Time Step Quasistatic. facesim employs the fork-join
model to process computationally intensive tasks in parallel.
It uses the following three parallel kernels for its computa-
tions:

Update state This kernel uses the Newton-Raphson meth-

od to solve the nonlinear system of equations in order
to find the steady state of the simulated mesh. This
quasi-static scheme achieves speedups of one to two or-
ders of magnitudes over explicit schemes by ignoring
inertial effects. It is not suitable for the simulation of
less constrained phenomena such as ballistic motion,
but it is sufficiently accurate to simulate effects such
as flesh deformation where the material is heavily in-
fluenced by contact, collision and self-collision and in-
ertial effects only have a minor impact on the state.

In each Newton-Raphson iteration, the kernel reduces
the nonlinear system of equations to a linear system
which is guaranteed to be positive definite and sym-
metric. These two properties allow the use of a fast
conjugate gradient solver later on. One iteration step
is computed by function Update Position Based State.
The matrix of the linear system is sparse and can hence

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

227

be stored in two one-dimensional arrays - dX full and
R full. The matrix is the sum of the contribution of
each tetrahedron of the face mesh.

Add forces This module computes the velocity-independent
forces acting on the simulation mesh. After the ma-
trix of the linear system with the position-independent
state has been computed by the previous kernel, the
right-hand side of that system has to be calculated.
The kernel does this by iterating over all tetrahedra
of the mesh, reading the positions of the vertices and
computing the force contribution to each of the four
nodes.

Conjugate gradient This kernel uses the conjugate gra-
dient algorithm to solve the linear equation system as-
sembled by the previous two modules. The two arrays
dX full and R full which store the sparse matrix are
sequentially accessed and matrix-vector multiplication
is employed to solve the system.

The input sets of facesim all use the same face mesh. Scal-
ing down the resolution of the mesh to create more tractable
input sizes is impractical. A reduction of the number of el-
ements in the model would result in under-resolution of the
muscle action and cause problems for collision detection[20].

from every segment. A feature vector is a multi-dimensional
mathematical description of the segment contents. It en-
codes fundamental properties such as color, shape and area.
Once the feature vectors are known, the indexing stage can
query the image database to obtain a candidate set of im-
ages. The database is organized as a set of hash tables
which are indexed with multi-probe LSH[28]. This method
uses hash functions which map similar feature vectors to
the same hash bucket with high probability. Because the
number of hash buckets is very high, multi-probe LSH first
derives a probing sequence which considers the success prob-
abilities for finding a candidate image in a bucket. It then
employs a step-wise approach which indexes buckets with
a higher success probability first. After a candidate set of
images has been obtained by the indexing stage, it is sent to
the ranking stage which computes a detailed similarity es-
timate and orders the images according to their calculated
rank. The similarity estimate is derived by analyzing and
weighing the pair-wise distances between the segments of
the query image and the candidate images. The underlying
metric employed is the Earth Mover’s Distance (EMD)[37].
For two images X and Y , it is defined as

EMD(X, Y) = min
X X

fijd(Xi, Yj)
i j

Our input sets for facesim are defined as follows:

• test: Print out help message.

• simdev: 80,598 particles, 372,126 tetrahedra, 1 frame

• simsmall: Same as simdev

• simmedium: Same as simdev

• simlarge: Same as simdev

• native: Same as simdev, but with 100 frames

 ferret
This application is based on the Ferret toolkit which is used
for content-based similarity search of feature-rich data such
as audio, images, video, 3D shapes and so on[27]. It was
developed by Princeton University. The reason for the in-
clusion in the benchmark is that it represents emerging next-
generation desktop and Internet search engines for non-text
document data types. In the benchmark, we have configured
the Ferret toolkit for image similarity search. Ferret is par-
allelized using the pipeline model with six stages. The first
and the last stage are for input and output. The middle four
stages are for query image segmentation, feature extraction,
indexing of candidate sets with multi-probe Locality Sen-
sitive Hashing (LSH)[28] and ranking. Each stage has its
own thread pool and the basic work unit of the pipeline is
a query image.

Segmentation is the process of decomposing an image into
separate areas which display different objects. The rationale
behind this step is that in many cases only parts of an image
are of interest, such as the foreground. Segmentation allows
the subsequent stages to assign a higher weight to image
parts which are considered relevant and seem to belong to-
gether. After segmentation, ferret extracts a feature vector

where Xi and Yj denote segments of X and Y and fij is the
extent to which Xi is matched to Yj .

The first and the last pipeline stage of ferret are serial.
The remaining four modules are parallel:

Image segmentation This kernel uses computer vision tech-

niques to break an image up into non-overlapping seg-
ments. The pipeline stage is implemented in func-
tion t seg, which calls image segment for every image.
This function uses statistical region merging (SRM)[33]
to segment the image. This method organizes the pix-
els of an image in sets, starting with a fine-granular
decomposition. It repeatedly merges them until the
final segmentation has been reached.

Feature extraction This module computes a 14-dimen-
sional feature vector for each image segment. The fea-
tures extracted are the bounding box of the segment
(5 dimensions) and its color moments (9 dimensions).
A bounding box is the minimum axis-aligned rectan-
gle which includes the segment. Color moments is a
compact representation of the color distribution. It
is conceptually similar to a histogram but uses fewer
dimensions. Segments are assigned a weight which
is proportional to the square root of its size. This
stage is implemented in function t extract. It calls
image extract helper to compute the feature vectors
for every image.

Indexing The indexing stage queries the image database to
obtain no more than twice the number of images which
are allowed to appear in the final ranking. This stage
is implemented in function t vec. ferret manages im-
age data in tables which have type cass table t. Ta-
bles can be queried with function cass table query.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

228

ρ

−

−∇ ∇

∂t

Wpoly6(r, h) =
64πh9

A (r) =
X

m W (r − r , h).

The indexing stage uses this function to access the
database in order to generate the candidate set of type
cass result t for the current query image. Indexing
employs LSH for the probing which is implemented in
function LSH query.

Ranking This module performs a detailed similarity com-
putation. From the candidate set obtained by the in-
dexing stage it chooses the final set of images which
are most similar to the query image and ranks them.
The ranking stage is implemented in function t rank.
It employs cass table query to analyze the candidate
set and to compute the final ranking with EMD. The
type of query that cass table query is to perform can
be described with a structure of type cass query t.

The number of query images determine the amount of par-
allelism. The working set size is dominated by the size of
the image database. The input sets for ferret are sized as
follows:

test: 1 image queries, database with 1 image, find top
1 image

simdev: 4 image queries, database with 100 images,
find top 5 images

state of the fluid at discrete locations and interpolates inter-
mediate values with radial symmetrical smoothing kernels.
An advantage of this method is the automatic conservation
of mass due to a constant number of particles, but it alone
does not guarantee certain physical principals such as sym-
metry of forces which have to be enforced separately. The
SPH algorithm derives a scalar quantity A at location r by
a weighted sum of all particles:

Aj
S j j

j j

In the equation, j iterates over all particles, mj is the mass
of particle j, rj its position, ρj the density at its location
and Aj the respective field quantity. W (r rj, h) is the
smoothing kernel to use for the interpolation with core ra-
dius h. Smoothing kernels are employed in order to make
the SPH method stable and accurate. Because each particle
i represents a volume with constant mass mi, the density
ρi appears in the equation and has to be recomputed every
time step. The density at a location r can be calculated by
substituting A with ρ in the previous equation:

ρS (r) =
X

mj W (r − rj, h)
simsmall: 16 image queries, database with 3,544 im- j

ages, find top 10 images .

simmedium: 64 image queries, database with 13,787
images, find top 10 images

simlarge: 256 image queries, database with 34,973
images, find top 10 images

native: 3,500 image queries, database with 59,695 im-
ages, find top 50 images

Applying the SPH interpolation equation to the pressure
term p and the viscosity term µ 2 of the Navier-Stokes
equation yields the equations for the pressure and viscosity
forces, but in order to solve the force symmetry problems of
the SPH method, fluidanimate employs slightly modified
formulas:

 fluidanimate fpressure = −

X
m pi + pj ∇W (r

— r , h)

This Intel RMS application uses an extension of the Smoothed
Particle Hydrodynamics (SPH) method to simulate an in-
compressible fluid for interactive animation purposes[32]. Its

i j
2ρ

i j
j

output can be visualized by detecting and rendering the
fviscosity = µ

X
m

vi − vj
∇

2
W (r

— r , h)

surface of the fluid. The force density fields are derived
directly from the Navier-Stokes equation. fluidanimate
uses special-purpose kernels to increase stability and speed.
fluidanimate was included in the PARSEC benchmark suite
because of the increasing significance of physics simulations
for computer games and other forms of real-time animations.

A simplified version of the Navier-Stokes equation for incom-
pressible fluids[35] which formulates conservation of momen-
tum is

ρ(
∂v

+ v · ∇v) = −∇p + ρg + µ∇
2
v

where v is a velocity field, ρ a density field, p a pressure
field, g an external force density field and µ the viscosity
of the fluid. The SPH method uses particles to model the

i j i j

j j

Stability, accuracy and speed of fluidanimate are highly
dependent on its smoothing kernels. In all cases but the
pressure and viscosity computations the program uses the
following kernel:

 315
(

(h2 − r2)3 0 ≤ r ≤ h

One feature of this kernel is that the distance r only ap-
pears squared. The computation of square roots is thus
not necessary to evaluate it. For pressure computations,
fluidanimate uses Desbrun’s spiky kernel Wspiky[12] and
Wviscosity for viscosity forces:

0 else

ρ

j

•

•

•

•

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

229

−

— r
3 +

r
2 +

h
 − 1 0 ≤ r ≤ h

 15
(

(h − r)3 0 ≤ r ≤ h
• test: 5,000 particles, 1 frame
• simdev: 15,000 particles, 3 frames

Wspiky(r, h) =
πh6

0 else
• simsmall: 35,000 particles, 5 frames

(3 2

• simmedium: 100,000 particles, 5 frames

 πh 0 else

The scene geometry employed by fluidanimate is a box in
which the fluid resides. All collisions are handled by adding
forces in order to change the direction of movement of the
involved particles instead of modifying the velocity directly.
The workload uses Verlet integration[42] to update the posi-
tion of the particles. This scheme does not store the velocity
of the particles explicitly, but their previous location in addi-
tion to the current position. The current velocity can thus
be deduced from the distance traveled since the last time
step. The force and mass are then used to compute the ac-
celeration and subsequently the new velocity. This scheme
is more robust because the velocity is implicitly given.

Every time step, fluidanimate executes five kernels, the
first two of which were further broken up into several smaller
steps:

Rebuild spatial index Because the smoothing kernels

W (r rj, h) have finite support h, particles can only
interact with each other up to the distance h. The
program uses a spatial indexing structure in order to
exploit proximity information and limit the number
of particles which have to be evaluated. Functions
ClearParticles and RebuildGrid build this accelera-
tion structure which is used by the subsequent steps.

Compute densities This kernel estimates the fluid den-
sity at the position of each particle by analyzing how
closely particles are packed in its neighborhood. In
a region in which particles are packed together more
closely, the density will be higher. This kernel has 3
phases which are implemented in the functions Init-
DensitiesAndForces, ComputeDensities and Compute-
Densities2.

Compute forces Once the densities are known, they can
be used to compute the forces. This step happens in
function ComputeForces. The kernel evaluates pres-
sure, viscosity and also gravity as the only external
influence. Collisions between particles are handled im-
plicitly during this step, too.

Handle collisions with scene geometry The next ker-
nel updates the forces in order to handle collisions of
particles with the scene geometry. This step is imple-
mented in function ProcessCollisions.

Update positions of particles Finally, the forces can be
used to calculate the acceleration of each particle and
update its position. fluidanimate uses a Verlet in-
tegrator[42] for these computations which is imple-
mented in function AdvanceParticles.

The input sets for fluidanimate are sized as follows:

• native: 500,000 particles, 500 frames

 freqmine
The freqmine application employs an array-based version
of the FP-growth (Frequent Pattern-growth) method[15] for
Frequent Itemset Mining (FIMI). It is an Intel RMS bench-
mark which was originally developed by Concordia Univer-
sity. FIMI is the basis of Association Rule Mining (ARM),
a very common data mining problem which is relevant for
areas such as protein sequences, market data or log anal-
ysis. The serial program this benchmark is based on won
the FIMI’03 best implementation award for its efficiency.
freqmine was included in the PARSEC benchmark suite be-
cause of the increasing demand for data mining techniques
which is driven by the rapid growth of the volume of stored
information.

FP-growth stores all relevant frequency information of the
transaction database in a compact data structure called FP-
tree (Frequent Pattern-tree)[16]. An FP-tree is composed
of three parts: First, a prefix tree encodes the transaction
data such that each branch represents a frequent itemset.
The nodes along the branches are stored in decreasing order
of frequency of the corresponding item. The prefix tree is a
more compact representation of the transaction database be-
cause overlapping itemsets share prefixes of the correspond-
ing branches. The second component of the FP-tree is a
header table which stores the number of occurrences of each
item in decreasing order of frequency. Each entry is also as-
sociated with a pointer to a node of the FP-tree. All nodes
which are associated with the same item are linked to a list.
The list can be traversed by looking up the corresponding
item in the header table and following the links to the end.
Each node furthermore contains a counter that encodes how
often the represented itemset as seen from the root to the
current node occurs in the transaction database. The third
component of the FP-tree is a lookup table which stores
the frequencies of all 2-itemsets. A row in the lookup table
gives all occurrences of items in itemsets which end with the
associated item. This information can be used during the
mining phase to omit certain FP-tree scans and is the ma-
jor improvement of the implemented algorithm. The lookup
table is especially effective if the dataset is sparse which is
usually the case. The FP-trees are then very big due to
the fact that only few prefixes are shared. In that case tree
traversals are more expensive, and the benefit from being
able to omit them is greater. The initial FP-tree can be
constructed with only two scans of the original database,
the first one to construct the header table and the second
one to compute the remaining parts of the FP-tree.

In order to mine the data for frequent itemsets, the FP-
growth method traverses the FP-tree data structure and re-
cursively constructs new FP-trees until the complete set of
frequent itemsets is generated. To construct a new FP-tree

• simlarge: 300,000 particles, 5 frames 2r h 2h
3

Wviscosity (r, h) =
2

15

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

230

TX∪{i} for an item i in the header of an existing FP-tree
TX , the algorithm first obtains a new pattern base from the
lookup table. The base is used to initialize the header of the
new tree TX∪{i}. Starting from item i in the header table
of the existing FP-tree TX , the algorithm then traverses the
associated linked list of all item occurrences. The patterns
associated with the visited branches are then inserted into
the new FP-tree TX∪{i}. The resulting FP-tree is less bushy
because it was constructed from fewer itemsets. The recur-
sion terminates when an FP-tree was built which has only
one path. The properties of the algorithm guarantee that
this is a frequent itemset.

freqmine has been parallelized with OpenMP. It employs
three parallel kernels:

Build FP-tree header This kernel scans the transaction

database and counts the number of occurrences of each
item. It performs the first of two database scans nec-
essary to construct the FP-tree. The result of this
operation is the header table for the FP-tree which
contains the item frequency information. This kernel
has one parallelized loop and is implemented in func-
tion scan1 DB.

Construct prefix tree The next kernel builds the initial
tree structure of the FP-tree. It performs the second
and final scan of the transaction database necessary
to build the data structures which will be used for the
actual mining operation. The kernel has four paral-
lelized loops. It is implemented in function scan2 DB
which contains two of them. The remaining two loops
are in its helper function database tiling.

Mine data The last kernel uses the data structures previ-
ously computed and mines them to recursively obtain
the frequent itemset information. It is an improved
version of the conventional FP-growth method[16]. This
module has similarities with the previous two kernels
which construct the initial FP-tree because it builds a
new FP-tree for every recursion step.

The module is implemented in function FP growth first.
It first derives the initial lookup table from the current
FP-tree by calling first transform FPTree into FP-
Array. This function executes the first of two paral-
lelized loops. After that the second parallelized loop is
executed in which the recursive function FP growth is
called. It is the equivalent of FP growth first. Each
thread calls FP growth independently so that a num-
ber of recursions up to the number of threads can be
active.

The input sets for freqmine are defined as follows:

test: Database with 3 synthetic transactions, mini-
mum support 1.

simdev: Database with 1,000 synthetic transactions,
minimum support 3.

simsmall: Database with 250,000 anonymized click
streams from a Hungarian online news portal, mini-
mum support 220.

simmedium: Same as simsmall but with 500,000 click
streams, minimum support 410.

simlarge: Same as simsmall but with 990,000 click
streams, minimum support 790.

native: Database composed of spidered collection of
250,000 web HTML documents[26], minimum support
11,000.

 streamcluster

This RMS kernel was developed by Princeton University and
solves the online clustering problem[34]: For a stream of
input points, it finds a predetermined number of medians
so that each point is assigned to its nearest center. The
quality of the clustering is measured by the sum of squared
distances (SSQ) metric. Stream clustering is a common op-
eration where large amounts or continuously produced data
has to be organized under real-time conditions, for example
network intrusion detection, pattern recognition and data
mining. The program spends most of its time evaluating the
gain of opening a new center. This operation uses a paral-
lelization scheme which employs static partitioning of data
points. The program is memory bound for low-dimensional
data and becomes increasingly computationally intensive as
the dimensionality increases. Due to its online character the
working set size of the algorithm can be chosen indepen-
dently from the input data. streamcluster was included in
the PARSEC benchmark suite because of the importance of
data mining algorithms and the prevalence of problems with
streaming characteristics.

The parallel gain computation is implemented in function
pgain. Given a preliminary solution, the function computes
how much cost can be saved by opening a new center. For
every new point, it weighs the cost of making it a new center
and reassigning some of the existing points to it against the
savings caused by minimizing the distance

d(x, y) = |x − y|
2

between two points x and y for all points. The distance
computation is implemented in function dist. If the heuris-
tic determines that the change would be advantageous the
results are committed.

The amount of parallelism and the working set size of a
problem are dominated by the block size. The input sets of
swaptions are defined as follows:

test: 10 input points, block size 10 points, 1 point
dimension, 2–5 centers, up to 5 intermediate centers
allowed

simdev: 16 input points, block size 16 points, 3 point
dimensions, 3–10 centers, up to 10 intermediate centers
allowed

simsmall: 4,096 input points, block size 4,096 points,
32 point dimensions, 10–20 centers, up to 1,000 inter-
mediate centers allowed

•

•

•

•

•

•

•

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

231

0 0.9

>:

simmedium: 8,192 input points, block size 8,192 points,
64 point dimensions, 10–20 centers, up to 1,000 inter-
mediate centers allowed

simlarge: 16,384 input points, block size 16,384 points,
128 point dimensions, 10–20 centers, up to 1,000 inter-
mediate centers allowed

native: 1,000,000 input points, block size 200,000 points,
128 point dimensions, 10–20 centers, up to 5,000 inter-
mediate centers allowed

 swaptions

The swaptions application is an Intel RMS workload which
uses the Heath-Jarrow-Morton (HJM) framework to price a
portfolio of swaptions. The HJM framework describes how
interest rates evolve for risk management and asset liability
management[17] for a class of models. Its central insight is

construct multi-threaded image processing pipelines trans-
parently on the fly. Future libraries might use concepts such
as the ones employed by VIPS to make multi-threaded func-
tionality available to the user.

The image transformation pipeline of the vips benchmark
has 18 stages. It is implemented in the VIPS operation
im benchmark. The stages can be grouped into the following
kernels:

Crop The first step of the pipeline is to remove 100 pixels
from all edges with VIPS operation im extract area.

Shrink Next, vips shrinks the image by 10%. This affine
transformation is implemented as the matrix operation

that there is an explicit relationship between the drift and
volatility parameters of the forward-rate dynamics in a no-
arbitrage market. Because HJM models are non-Markovian

f (→x) =

»
0.9 0

–

→x +

»
0
–

the analytic approach of solving the PDE to price a deriva-
tive cannot be used. Swaptions therefore employs Monte
Carlo (MC) simulation to compute the prices. The work-
load was included in the benchmark suite because of the
significance of PDEs and the wide use of Monte Carlo sim-
ulation.

The program stores the portfolio in the swaptions array.
Each entry corresponds to one derivative. Swaptions parti-
tions the array into a number of blocks equal to the num-
ber of threads and assigns one block to every thread. Each
thread iterates through all swaptions in the work unit it was
assigned and calls the function HJM Swaption Blocking for
every entry in order to compute the price. This function in-
vokes HJM SimPath Forward Blocking to generate a random
HJM path for each MC run. Based on the generated path
the value of the swaption is computed.

The following input sets are provided for swaptions:

in VIPS operation im affine. The transformation uses
bilinear interpolation to compute the output values.

Adjust white point and shadows To improve the per-
ceived visual quality of the image under the expected
target conditions, vips brightens the image, adjusts
the white point and pulls the shadows down. These
operations require several linear transformations and a
matrix multiplication, which are implemented in im lin-
tra, im lintra vec and im recomb.

Sharpen The last step slightly exaggerates the edges of the
output image in order to compensate for the blurring
caused by printing and to give the image a better over-
all appearance. This convolution employs a Gaussian
blur filter with mask radius 11 and a subtraction in
order to isolate the high-frequency signal component
of the image. The intermediate result is transformed
via a look-up table shaped as

• test: 1 swaption, 5 simulations

f (x) =

0.5x |x| ≤ 2.5

1.5x + 2.5 x < −2.5

• simdev: 3 swaptions, 50 simulations

• simsmall: 16 swaptions, 5,000 simulations

• simmedium: 32 swaptions, 10,000 simulations

• simlarge: 64 swaptions, 20,000 simulations

• native: 128 swaptions, 1,000,000 simulations

 vips
This application is based on the VASARI Image Processing
System (VIPS)[30] which was originally developed through
several projects funded by European Union (EU) grants.
The benchmark version is derived from a print on demand
service that is offered at the National Gallery of London,
which is also the current maintainer of the system. The
benchmark includes fundamental image operations such as
an affine transformation and a convolution. It was chosen
because image transformations are a common task on desk-
top computers and for the ability of the VASARI system to

1.5x − 2.5 x > 2.5

and added back to the original image to obtain the
sharpened image. Sharpening is implemented in VIPS
operation im sharpen.

The VASARI Image Processing System fuses all image op-
erations to construct an image transformation pipeline that
can operate on subsets of an image. VIPS can automat-
ically replicate the image transformation pipeline in order
to process multiple image regions concurrently. This hap-
pens transparently for the user of the library. Actual image
processing and any I/O is deferred as long as possible. Inter-
mediate results are represented in an abstract way by partial
image descriptors. Each VIPS operation can specify a de-
mand hint which is evaluated to determine the work unit
size of the combined pipeline. VIPS uses memory-mapped
I/O to load parts of an input image on demand. After the
requested part of a file has been loaded, all image operations

•

•

•

0

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

232

×

are applied to the image region before the output region is
written back to disk.

A VIPS operation is composed of the main function which
provides the public interface employed by the users, the
generate function which implements the actual image op-
eration, as well as a start and a stop function. The main
functions register the operation with the VIPS evaluation
system. Start functions are called by the runtime system
to perform any per-thread initialization. They produce a
sequence value which is passed to all generate functions and
the stop function. Stop functions handle the shutdown at
the end of the evaluation phase and destroy the sequence
value. The VIPS system guarantees the mutually exclusive
execution of start and stop functions, which can thus be
used to communicate between threads during the pipeline
initialization or shutdown phase. The generate functions
transform the image and correspond to the pipeline stages.

The sizes of the images used for the input sets for vips are:

• test: 256 × 288 pixels

• simdev: 256 × 288 pixels

• simsmall: 1, 600 × 1, 200 pixels

• simmedium: 2, 336 × 2, 336 pixels

• simlarge: 2, 662 × 5, 500 pixels

• native: 18, 000 × 18, 000 pixels

3.2.12 x264
The x264 application is an H.264/AVC (Advanced Video
Coding) video encoder. In the 4th annual video codec com-
parison[41] it was ranked 2nd best codec for its high en-
coding quality. It is based on the ITU-T H.264 standard
which was completed in May 2003 and which is now also
part of ISO/IEC MPEG-4. In that context the standard is
also known as MPEG-4 Part 10. H.264 describes the lossy
compression of a video stream[43]. It improves over previ-
ous video encoding standards with new features such as in-
creased sample bit depth precision, higher-resolution color
information, variable block-size motion compensation (VB-
SMC) or context-adaptive binary arithmetic coding (CABAC).
These advancements allow H.264 encoders to achieve a higher
output quality with a lower bit-rate at the expense of a
significantly increased encoding and decoding time. The
flexibility of H.264 allows its use in a wide range of con-
texts with different requirements, from video conferencing
solutions to high-definition (HD) movie distribution. Next-
generation HD DVD or Blu-ray video players already require
H.264/AVC encoding. The flexibility and wide range of ap-
plication of the H.264 standard and its ubiquity in next-
generation video systems are the reasons for the inclusion of
x264 in the PARSEC benchmark suite.

H.264 encoders and decoders operate on macroblocks of pix-
els which have the fixed size of 16 16 pixels. Various tech-
niques are used to detect and eliminate data redundancy.
The most important one is motion compensation. It is em-
ployed to exploit temporal redundancy between successive
frames. Motion compensation is usually the most expensive

operation that has to be executed to encode a frame. It
has a very high impact on the final compression ratio. The
compressed output frames can be encoded in one of three
possible ways:

I-Frame An I-Frame includes the entire image and does not
depend on other frames. All its macroblocks are en-
coded using intra prediction. In intra mode, a predic-
tion block is formed using previously encoded blocks.
This prediction block is subtracted from the current
block prior to encoding.

P-Frame These frames include only the changed parts of
an image from the previous I- or P-frame. A P-Frame
is encoded with intra prediction and inter prediction
with at most one motion-compensated prediction sig-
nal per prediction block. The prediction model is formed
by shifting samples from previously encoded frames to
compensate for motion such as camera pans.

B-Frame B-Frames are constructed using data from the
previous and next I- or P-Frame. They are encoded
like a P-frame but using inter prediction with two
motion-compensated prediction signals. B-Frames can
be compressed much more than other frame types.

The enhanced inter and intra prediction techniques of H.264
are the main factors for its improved coding efficiency. The
prediction schemes can operate on block of varying size and

shapes which can be as small as 4 × 4 pixels.

The parallel algorithm of x264 uses the pipeline model with
one stage per input video frame. This results in a virtual
pipeline with as many stages as there are input frames. x264
processes a number of pipeline stages equal to the number
of encoder threads in parallel, resulting in a sliding window
which moves from the beginning of the pipeline to its end.
For P- and B-Frames the encoder requires the image data
and motion vectors from the relevant region of the reference
frames in order to encode the current frame, and so each
stage makes this information available as it is calculated
during the encoding process. Fast upward movements can
thus cause delays which can limit the achievable speedup of
x264 in practice. In order to compensate for this effect, the
parallelization model requires that x264 is executed with
a number of threads greater than the number of cores to
achieve maximum performance.

x264 calls function x264 encoder encode to encode another
frame. x264 encoder encode uses function x264 slicetype -
decide to determine as which type the frame will be encoded
and calls all necessary functions to produce the correct out-
put. It also manages the threading functionality of x264.
Threads use the functions x264 frame cond broadcast and
x264 frame cond wait to inform each other of the encoding
progress and to make sure that no data is accessed while it
is not yet available.

The videos used for the input sets have been derived from
the uncompressed version of the short film ”Elephants Dream”[3].
The number of frames determines the amount of parallelism.
The exact characteristics of the input sets are:

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

233

1

• ×

• ×

• ×

±

±
±

3

• test: 32 × 18 pixels, 1 frame

• simdev: 64 × 36 pixels, 3 frames

• simsmall: 640 × 360 pixels (

HDTV resolution), 8

parameters. The baseline cache configuration was a shared 4-
way associative cache with 4 MB capacity and 64 byte lines.
By default the workloads used 8 cores. All experi- ments
were conducted on a set of Symmetric Multiproces-

3

frames

simmedium: 640 360 pixels (1 HDTV resolution), 32
frames

simlarge: 640 360 pixels (3 HDTV resolution), 128
frames

native: 1, 920 1, 080 pixels (HDTV resolution), 512
frames

4. METHODOLOGY
In this section we explain how we characterized the PAR-
SEC benchmark suite. We are interested in the following
characteristics:

Parallelization PARSEC benchmarks use different paral-

lel models which have to be analyzed in order to know
whether the programs can scale well enough for the
analysis of CMPs of a certain size.

Working sets and locality Knowledge of the cache re-
quirements of a workload are necessary to identify bench-
marks suitable for the study of CMP memory hierar-
chies.

Communication to computation ratio and sharing The
communication patterns of a program determine the
potential impact of private caches and the on-chip net-
work on performance.

Off-chip traffic The off-chip traffic requirements of a pro-
gram are important to understand how off-chip band-
width limitations of a CMP can affect performance.

In order to characterize all applications, we had to make
several trade-off decisions. Given a limited amount of com-
putational resources, higher accuracy comes at the expense
of a lower number of experiments. We followed the approach
of similar studies[44, 22] and chose faster but less accu-
rate execution-driven simulation to characterize the PAR-
SEC workloads. This approach is feasible because we limit
ourselves to study fundamental program properties which
should have a high degree of independence from architec-
tural details. Where possible we supply measurement results
from real machines. This methodology made it possible to
gather the large amount of data which we present in this
study. We preferred machine models comparable to real
processors over unrealistic models which might have been a
better match for the program needs.

 Experimental Setup
We used CMP$im[22] for our workload characterization.
CMP$im is a plug-in for Pin[2] that simulates the cache hi-
erarchy of a CMP. Pin is similar to the ATOM toolkit for
Compaq’s Tru64 Unix on Alpha processors. It uses dynamic
binary instrumentation to insert routines at arbitrary points
in the instruction stream. For the characterization we sim-
ulate a single-level cache hierarchy of a CMP and vary its

sor (SMP) machines with x86 processors and Linux. The
programs were compiled with gcc 4.2.1.

Because of the large computational cost we could not per-
form simulations with the native input set, instead we used
the simlarge inputs for all simulations and analytically de-
scribe any differences between the two sets of which we
know.

 Methodological Limitations and Error Mar-

gins
For their characterization of the SPLASH-2 benchmark suite,
Woo et al. fixed a timing model which they used for all ex-
periments[44]. They give two reasons: First, nondetermin-
istic programs would otherwise be difficult to compare be-
cause different execution paths could be taken, and second,
the characteristics they study are largely independent from
an architecture. They also state that they believe that the
timing model should have only a small impact on the results.
While we use similar characteristics and share this belief, we
think a characterization study of multi-threaded programs
should nevertheless analyze the impact of nondeterminism
on the reported data. Furthermore, because our methodol-
ogy is based on execution on real machines combined with
dynamic binary instrumentation, it can introduce additional
latencies, and a potential concern is that the nondetermin-
istic thread schedule is altered in a way that might affect
our results in unpredictable ways. We therefore conducted
a sensitivity analysis to quantify the impact of nondetermin-
ism.

Alameldeen and Wood studied the variability of nondeter-
ministic programs in more detail and showed that even small
pseudo-random perturbations of memory latencies are ef-
fective to force alternate execution paths[5]. We adopted
their approach and modified CMP$im to add extra delays
to its analysis functions. Because running all experiments
multiple times as Alameldeen and Wood did would be pro-
hibitively expensive, we instead decided to randomly select
a subset of all experiments for each metric which we use and
report its error margins.

The measured quantities deviated by no more than 0.04%
from the average, with the following two exceptions. The
first excpetion is metrics of data sharing. In two cases
(bodytrack and swaptions) the classification is noticeably
affected by the nondeterminism of the program. This is par-
tially caused because shared and thread-private data con-
tend aggressively for a limited amount of cache capacity.
The high frequency of evictions made it difficult to classify
lines and accesses as shared or private. In these cases, the
maximum deviation of the number of accesses from the av-
erage was as high as 4.71%, and the amount of sharing
deviated by as much as 15.22%. We considered this un-
certainty in our study and did not draw any conclusions
where the variation of the measurements did not allow it.
The second case of high variability is when the value of the
measured quantity is very low (below 0.1% miss rate or cor-
responding ratio). In these cases the nondeterministic noise

1

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

234

16 10.00%

7.50%

12

5.00%

8

2.50%

4

0.00%

0
0 4 8 12 16

Number of Cores

Figure 1: Upper bound for speedup of PARSEC
workloads with input set simlarge based on instruc-
tion count. Limitations are caused by serial sec-
tions, growing parallelization overhead and redun-
dant computations.

made measurements difficult. We do not consider this a
problem because in this study we focus on trends of ratios,
and quantities that small do not have a noticeable impact.
It is however an issue for the analysis of working sets if the
miss rate falls below this threshold and continues to decrease
slowly. Only few programs are affected, and our estimate of
their working set sizes might be slightly off in these cases.
This is primarily an issue inherent to experimental working
set analysis, since it requires well-defined points of inflection
for conclusive results. Moreover, we believe that in these
cases the working set size varies nondeterministically, and
researchers should expect slight variations for each bench-
mark run.

The implications of these results are twofold: First, they
show that our methodology is not susceptible to the non-
deterministic effects of multi-threaded programs in a way
that might invalidate our findings. Second, they also con-
firm that the metrics which we present in this paper are
fundamental program properties which cannot be distorted
easily. The reported application characteristics are likely to
be preserved on a large range of architectures.

5. PARALLELIZATION
In this section we discuss the parallelization of the PAR-
SEC suite. As we will see in Section 6, several PARSEC
benchmarks (canneal, dedup, ferret and freqmine) have
working sets so large they should be considered unbounded
for an analysis. These working sets are only limited by the
amount of main memory in practice and they are actively
used for inter-thread communication. The inability to use
caches efficiently is a fundamental property of these pro-
gram and affects their concurrent behavior. Furthermore,
dedup and ferret use a complex, heterogeneous paralleliza-
tion model in which specialized threads execute different
functions with different characteristics at the same time.
These programs employ a pipeline with dedicated thread
pools for each parallelized pipeline stage. Each thread pool

Figure 2: Parallelization overhead of PARSEC
benchmarks. The chart shows the slowdown of the
parallel version on 1 core over the serial version.

has enough threads to occupy the whole CMP, and it is
the responsibility of the scheduler to assign cores to threads
in a manner that maximizes the overall throughput of the
pipeline. Over time, the number of threads active for each
stage will converge against the inverse throughput ratios of
the individual pipeline stages relative to each other.

Woo et al. use an abstract machine model with a uniform
instruction latency of one cycle to measure the speedups of
the SPLASH-2 programs[44]. They justify their approach
by pointing out that the impact of the timing model on the
characteristics which they measure - including speedup - is
likely to be low. Unfortunately, this is not true in general for
PARSEC workloads. While we have verified in Section 4.2
that the fundamental program properties such as miss rate
and instruction count are largely not susceptible to timing
shocks, the synchronization and timing behavior of the pro-
grams is. Using a timing model with perfect caches sig-
nificantly alters the behavior of programs with unbounded
working sets, for example how long locks to large, shared
data structures are held. Moreover, any changes of the tim-
ing model have a strong impact on the number of active
threads of programs which employ thread specialization. It
will thus affect the load balance and synchronization be-
havior of these workloads. We believe it is not possible to
discuss the timing behavior of these programs without also
considering for example different schedulers, which is beyond
the scope of this paper. Similar dependencies of commercial
workloads on their environment are already known[9, 4].

Unlike Woo et al. who measured actual concurrency on an
abstract machine, we therefore decided to analyze inherent
concurrency and its limitations. Our approach is based on
the number of executed instructions in parallel and serial re-
gions of the code. We neglect any delays due to blocking on
contended locks and load imbalance. This methodology is
feasible because we do not study performance, our interest
is in fundamental program characteristics. The presented
data is largely timing-independent and a suitable measure
of the concurrency inherent in a workload. The results in

Ideal

Blackscholes

Bodytrack

Canneal

Dedup

Facesim

Ferret

Fluidanimate

Freqmine

Streamcluster

Swaptions

Vips

X264

A
c
h
ie

v
a
b
le

 S
p
e
e
d
u
p

B
la

c
k
s
c
h
o
le

s

B
o
d
y
t
r
a
c
k

C
a
n
n
e
a
l

D
e
d
u
p

F
a
c
e
s
im

F
e
rr

e
t

F
lu

id
a
n
im

a
te

F
re

q
m

in
e

S
tr

e
a
m

c
lu

st
e
r

S
w

a
p
t
io

n
s

V
ip

s

X
2
6
4

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

235

×

Figure 1 show the maximum achievable speedup measured
that way. The numbers account for limitations such as un-
parallelized code sections, synchronization overhead and re-
dundant computations. PARSEC workloads can achieve ac-
tual speedups close to the presented numbers. We verified
on a large range of architectures that lock contention and
other timing-dependent factors are not limiting factors, but
we know of no way to show it in a platform-independent
way given the complications outlined above. The maximum
speedup of bodytrack, x264 and streamcluster is limited
by serial sections of the code. fluidanimate is primarily
limited by growing parallelization overhead. On real ma-
chines, x264 is furthermore bound by a data dependency
between threads, however this has only a noticeable impact
on machines larger than the ones described here. It is rec-
ommended to run x264 with more threads than cores, since
modeling and exposing these dependencies to the scheduler
is a fundamental aspect of its parallel algorithm, compara-
ble to the parallel algorithms of dedup and ferret. Figure 2
shows the slowdown of the parallel version on 1 core over the
serial version. The numbers show that all workloads use ef-
ficient parallel algorithms which are not substantially slower
than the corresponding serial algorithms.

PARSEC programs scale well enough to study CMPs. We
believe they are also useful on machines larger than the
ones analyzed here. The PARSEC suite exhibits a wider
variety of parallelization models than previous benchmark
suites such as the pipeline model. Some of its workloads
can adapt to different timing models and can use threads to
hide latencies. It is important to analyze these programs in
the context of the whole system.

6. WORKING SETS AND LOCALITY
The temporal locality of a program can be estimated by
analyzing how the miss rate of a processor’s cache changes as
its capacity is varied. Often the miss rate does not decrease
continuously as the size of a cache is increased, but stays on
a certain level and then makes a sudden jump to a lower level
when the capacity becomes large enough to hold the next
important data structure. For CMPs an efficient functioning
of the last cache level on the chip is crucial because a miss
in the last level will require an access to off-chip memory.

To analyze the working sets of the PARSEC workloads we
studied a cache shared by all processors. Our results are pre-
sented in Figure 3. In Table 3 we summarize the important
characteristics of the identified working sets. Most work-
loads exhibit well-defined working sets with clearly identifi-
able points of inflection. Compared to SPLASH-2, PARSEC
working sets are significantly larger and can reach hundreds
of megabytes such as in the cases of canneal and freqmine.

Two types of workloads can be distinguished: The first
group contains benchmarks such as bodytrack and swaptions
which have working sets no larger than 16 MB. These work-
loads have a limited need for caches with a bigger capac-
ity, and the latest generation of CMPs often already has
caches sufficiently large to accommodate most of their work-
ing sets. The second group of workloads is composed of the
benchmarks canneal, ferret, facesim, fluidanimate and
freqmine. These programs have very large working sets
of sizes 65 MB and more, and even with a relatively con-

strained input set such as simlarge, their working sets can
reach hundreds of megabytes. Moreover, the need of those
workloads for cache capacity is nearly insatiable and grows
with the amount of data which they process. In Table 3 we
give our estimates for the largest working set of each PAR-
SEC workload for the native input set. In several cases
they are significantly larger and can even reach gigabytes.
These large working sets are often the consequence of an
algorithm that operates on large amounts of collected in-
put data. ferret for example keeps a data base of feature
vectors of images in memory to find the images most sim-
ilar to a given query image. The cache and memory needs
of these applications should be considered unbounded, as
they become more useful to their users if they can work
with increased amounts of data. Programs with unbounded
working sets are canneal, dedup, ferret and freqmine.

In Figure 4 we present our analysis of the spatial local-
ity of the PARSEC workloads. The data shows how the
miss rate of a shared cache changes with line size. All pro-
grams benefit from larger cache lines, but to different ex-
tents. facesim, fluidanimate and streamcluster show the
greatest improvement as the line size is increased, up to the
the maximum value of 256 bytes which we used. These pro-
grams have streaming behavior, and an increased line size
has a prefetching effect which these workloads can take
ad- vantage of. facesim for example spends most of its time
updating the position-based state of the model, for which it
employs an iterative Newton-Raphson algorithm. The algo-
rithm iterates over the elements of a sparse matrix which is
stored in two one-dimensional arrays, resulting in a stream-
ing behavior. All other programs also show good improve-
ment of the miss rate with larger cache lines, but only up
to line sizes of about 128 bytes. The miss rate is not sub-
stantially reduced with larger lines. This is due to a limited
size of the basic data structures employed by the programs.
They represent independent logical units, each of which is
intensely worked with during a computational phase. For
example, x264 operates on macroblocks of 8 8 pixels at
a time, which limits the sizes of the used data structures.
Processing a macroblock is computationally intensive and
largely independent from other macroblocks. Consequently,
the amount of spatial locality is bounded in these cases.

For the rest of our analysis we chose a cache capacity of 4
MB for all experiments. We could have used a matching
cache size for each workload, but that would have made
comparisons very difficult, and the use of very small or very
large cache sizes is not realistic. Moreover, in the case of the
workloads with an unbounded working set size, a working
set which completely fits into a cache would be an artifact
of the limited simulation input size and would not reflect
realistic program behavior.

7. COMMUNICATION-TO-COMPUTATION

RATIO AND SHARING
In this section we discuss how PARSEC workloads use caches
to communicate. Most PARSEC benchmarks share data
intensely. Two degrees of sharing can be distinguished:
Shared data can be read-only during the parallel phase, in
which case it is only used for lookups and analysis. Input
data is frequently used in such a way. But shared data can
also be used for communication between threads, in which

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

236

25.00%

20.00%

15.00%

10.00%

5.00%

blackscholes

2.00%

1.50%

1.00%

0.50%

bodytrack

30.00%

20.00%

10.00%

canneal

2.00%

1.50%

1.00%

0.50%

dedup

0.00%

0.00%

0.00%

0.00%

5.00%

4.00%

3.00%

2.00%

1.00%

facesim

10.00%

8.00%

6.00%

4.00%

2.00%

ferret

3.00%

2.00%

1.00%

fluidanimate

2.00%

1.50%

1.00%

0.50%

freqmine

0.00%

0.00%

0.00%

0.00%

20.00%

streamcluster

5.00%

swaptions

10.00%

vips

10.00%

x264

15.00%

10.00%

4.00%

3.00%

2.00%

8.00%

6.00%

4.00%

8.00%

6.00%

4.00%

5.00%

1.00%

2.00%

2.00%

0.00%

0.00%

0.00%

0.00%

Cache Size (KB) Cache Size (KB) Cache Size (KB) Cache Size (KB)

Figure 3: Miss rates versus cache size. Data assumes a shared 4-way associative cache with 64 byte lines. WS1
and WS2 refer to important working sets which we analyze in more detail in Table 3. Cache requirements of
PARSEC benchmark programs can reach hundreds of megabytes.

Program
Input Set
simlarge

Input Set
native

Working Set 2
Size

Estimate

Working Set 1 Working Set 2
Data

Structure(s)
Size Growth

Rate
Data

Structure(s)
Size Growth

Rate
blackscholes options 64 KB C portfolio data 2 MB C same
bodytrack edge maps 512 KB const. input frames 8 MB const. same
canneal elements 64 KB C netlist 256 MB DS 2 GB
dedup data chunks 2 MB C hash table 256 MB DS 2 GB
facesim tetrahedra 256 KB C face mesh 256 MB DS same
ferret images 128 KB C data base 64 MB DS 128 MB
fluidanimate cells 128 KB C particle data 64 MB DS 128 MB
freqmine transactions 256 KB C FP-tree 128 MB DS 1 GB
streamcluster data points 64 KB C data block 16 MB user-def. 256 MB
swaptions swaptions 512 KB C same as WS1 same same same
vips image data 64 KB C image data 16 MB C same
x264 macroblocks 128 KB C reference frames 16 MB C same

Table 3: Important working sets and their growth rates. DS represents the data set size and C is the number
of cores. Working set sizes are taken from Figure 3. Values for native input set are analytically derived
estimates. Working sets that grow proportional to the number of cores C are aggregated private working
sets and can be split up to fit into correspondingly smaller, private caches.

WS1

WS2

WS1

WS2

WS1

WS2

WS1
WS2

WS1

WS2 WS1

WS2

WS1

WS2

WS1

WS2

WS1
WS1

WS2

WS1

WS2

WS1

WS2

M
is

s
 R

a
te

 (
%

)
M

is
s
 R

a
te

 (
%

)
M

is
s
 R

a
te

 (
%

)

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

237

1.00%

0.75%

0.50%

0.25%

0.00%

15.00%

10.00%

5.00%

0.00%

blackscholes fluidanimate swaptions canneal facesim streamcluster x264
bodytrack freqmine dedup ferret vips

Figure 4: Miss rates as a function of line size. Data assumes 8 cores sharing a 4-way associative cache with
4 MB capacity. Miss rates are broken down to show the effect of loads and stores.

55.00%

50.00%

45.00%

40.00%

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

bodytrack ferret
blackscholes dedup

freqmine

swaptions
vips

x264

Figure 5: Portion of a 4-way associative cache with 4 MB capacity which is shared. The line size is varied
from 8 to 256 bytes. Data assumes 8 cores and is broken down to show the number of threads sharing the
lines.

case it is also modified during the parallel phase. In Figure 5
we show how the line size affects sharing. The data com-
bines the effects of false sharing and the access pattern of
the program due to constrained cache capacity. In Figure 6,
we analyze how the program uses its data. The chart shows
what data is accessed and how intensely it is used. The in-
formation is broken down in two orthogonal ways, resulting
in four possible types of accesses: Read and write accesses
and accesses to thread-private and shared data. Addition-
ally, we give numbers for true shared accesses. An access is
a true access if the last reference to that line came from an-
other thread. True sharing does not count repeated accesses
by the same thread. It is a useful metric to estimate the re-
quirements for the cache coherence mechanism of a CMP: A
true shared write can trigger a coherence invalidate or up-
date, and a true shared read might require the replication
of data. All programs exhibit very few true shared writes.
Cache misses are not included in Figure 6, we analyze them

separately when we discuss off-chip traffic in Section 8.

Four programs (canneal, facesim, fluidanimate and stream-
cluster) showed only trivial amounts of sharing. They have
therefore not been included in Figure 5. In the case of
canneal, this is a results of the small cache capacity. Most
of its large working set is shared and actively worked with
by all threads. However, only a minuscule fraction of it fits
into the cache, and the probability that a line is accessed by
more than one thread before it gets replaced is very small
in practice. With a 256 MB cache, 58% of its cached data is
shared. blackscholes shows a substantial amount of shar-
ing, but almost all its shared data is only accessed by two
threads. This is a side-effect of the parallelization model: At
the beginning of the program, the boss threads initializes the
portfolio data before it spawns worker threads which process
parts of it in a data-parallel way. As such, the entire port-
folio is shared between the boss thread and its workers, but

Stores

Loads

>8 Sharers

8 Sharers

7 Sharers

6 Sharers

5 Sharers

4 Sharers

3 Sharers

2 Sharers

M
is

s
 R

a
t
e
 (
%
)

S
h
a
re

d
 L

in
e
s
 (

%
)

8

1
6

8

1
6

3
2

6
4

1
2
8

2
5
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

8

1
6

3
2

6
4

1
2
8

2
5
6

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

8

1
6

3
2

6
4

1
2
8

2
5
6

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

8

1
6

3
2

6
4

1
2
8

2
5
6

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

238

 True Shared
Writes

 True Shared
Reads

Shared Writes

Shared Reads

Private Writes

Private Reads

5

4

3

2

1

0

blackscholes

canneal

facesim

fluidanimate

streamcluster vips

bodytrack dedup ferret freqmine swaptions x264

Figure 6: Traffic from cache in bytes per instruction for 1 to 16 cores. Data assumes a shared 4-way associative
cache with 64 byte lines. Results are broken down in accesses to private and shared data. True accesses do
not count repeated accesses from the same thread.

the worker threads can process the options independently
from each other and do not have to communicate with each
other. ferret shows a modest amount of data sharing. Like
the sharing behavior of canneal, this is caused by severely
constrained cache capacity. ferret uses a database that is
scanned by all threads to find entries similar to the query
image. However, the size of the database is practically un-
bounded, and because threads do not coordinate their scans
with each other it is unlikely that a cache line gets accessed
more than once. bodytrack and freqmine exhibit substan-
tial amounts of sharing due to the fact that threads process
the same data. The strong increase of sharing of freqmine
is caused by false sharing, as the program uses an array-
based tree as its main data structure. Larger cache lines
will contain more nodes, increasing the chance that the line
is accessed by multiple threads. vips has some shared data
which is mostly used by only two threads. This is also pre-
dominantly an effect of false sharing since image data is
stored in a consecutive array which is processed in a data-
parallel way by threads. x264 uses significant amounts of
shared data, most of which is only accessed by a low num-
ber of threads. This data is the reference frames, since a
thread needs this information from other stages in order
to encode the frame it was assigned. Similarly, the large
amount of shared data of dedup is the input which is passed
from stage to stage.

Most PARSEC workloads use a significant amount of com-
munication, and in many cases the volume of traffic between
threads can be so high that efficient data exchange via a
shared cache is severely constrained by its capacity. An ex-
ample for this is x264. Figure 6 shows a large amount of
writes to shared data, but contrary to intuition its share di-
minishes rapidly as the number of cores is increased. This
effect is caused by a growth of the working sets of x264:
Table3 shows that both working set WS1 and WS2 grow pro-
portional to the number of cores. WS1 is mostly composed
of thread-private data and is the one which is used more
intensely. WS2 contains the reference frames and is used

for inter-thread communication. As WS1 grows, it starts to
displace WS2, and the threads are forced to communicate
via main memory. Two more programs which communicate
intensely are dedup and ferret. Both programs use the
pipeline parallelization model with dedicated thread pools
for each parallel stage, and all data has to be passed from
stage to stage. fluidanimate also shows a large amount of
inter-thread communication, and its communication needs
grow as the number of threads increase. This is caused by
the spatial partitioning that fluidanimate uses to distribute
the work to threads. Smaller partitions mean a worse sur-
face to volume ratio, and communication grows with the
surface.

Overall, most PARSEC workloads have complex sharing
patterns and communicate actively. Pipelined programs can
require a large amount of bandwidth between cores in order
to communicate efficiently. Shared caches with insufficient
capacity can limit the communication efficiency of work-
loads, since shared data structures might get displaced to
memory.

8. OFF-CHIP TRAFFIC
In this section we analyze what the off-chip bandwidth re-
quirements of PARSEC workloads are. Our goal is to under-
stand how the traffic of an application grows as the number
of cores of a CMP increases and how the memory wall will
limit performance. We again simulated a shared cache and
analyze how traffic develops as the number of cores increases.
Our results are presented in Figure 7.

The data shows that the off-chip bandwidth requirements of
blackscholes are small enough so that memory bandwidth
is unlikely to be an issue. bodytrack, dedup, fluidanimate,
freqmine, swaptions and x264 are more demanding. More-
over, these programs exhibit a growing bandwidth demand
per instruction as the number of cores increases. In the
case of bodytrack, most off-chip traffic happens in short, in-
tense bursts since the off-chip communication predominantly

T
ra

ff
ic

 (
B

y
te

s
/

In
st

r.
)

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

239

0.1

0.08

0.05

0.03

0

1

0.75

0.5

0.25

0

blackscholes dedup

freqmine x264 facesim streamcluster

bodytrack fluidanimate swaptions canneal ferret vips

Figure 7: Breakdown of off-chip traffic into bytes for loads, stores and write-backs per instructions. Results
are shown for 1 to 16 cores. Data assumes a 4-way associative 4 MB cache with 64 byte lines, allocate-on-store
and write-back policy.

T
ra

ff
ic

 (
B
y
te

s/
In

st
r.

)

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

 Writebacks

Stores

Loads

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

240

takes place during the edge map computation. This phase is only a small part of the serial runtime, but on machines with constrained
memory bandwidth it quickly becomes the limiting factor for scalability. The last group of programs is composed of canneal, facesim,
ferret, streamcluster and vips. These programs have very high bandwidth re- quirements and also large working sets. canneal shows a
decreasing demand for data per instruction with more cores. This behavior is caused by improved data sharing.

It is important to point out that these numbers do not take the increasing instruction throughput of a CMP into account as its number of
cores grows. A constant traffic amount in Figure 7 means that the bandwidth requirements of an application which scales linearly will grow
exponen- tially. Since many PARSEC workloads have high band- width requirements and working sets which exceed conven- tional caches
by far, off-chip bandwidth will be their most severe limitation of performance. Substantial architectural improvements are necessary to
allow emerging workloads to take full advantage of larger CMPs.

9. CONCLUSIONS
The PARSEC benchmark suite is designed to provide par- allel programs for the study for CMPs. It focuses on emerg- ing desktop and
server applications and does not have the limitations of other benchmark suites. It is diverse enough to be considered representative, it is
not skewed towards HPC programs, it uses state-of-art algorithms and it sup- ports research. In this study we characterized the PARSEC
workloads to provide the basic understanding necessary to allow other researchers the effective use of PARSEC for their studies. We
analyzed the parallelization, the working sets and locality, the communication-to-computation ratio and the off-chip traffic of its
workloads. The high cost of mi- croarchitectural simulation forced us to use smaller machine and problem sizes than we would really like to
evaluate.

Our analysis shows that current CMPs are not sufficientlyprepared for the demands of future applications. Many ar- chitectural
problems still have to be solved to create micro- processors which are ready for the next generation of work- loads. Large working sets and
high off-chip bandwidth de- mands might limit the scalability of future programs. PAR- SEC can be used to drive research efforts by
application demands.

10. REFERENCES
[1] MediaBench II.

http://euler.slu.edu/~fritts/mediabench/.

[2] Pin. http://rogue.colorado.edu/pin/.

[3] Elephants Dream. http://www.elephantsdream.org/, 2006.

[4] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin, and D. Sorin. Evaluating Non-Deterministic
Multi-Threaded Commercial Workloads. In Proceedings of the Computer Architecture Evaluation using Commercial Workloads,
February 2002.

[5] A. Alameldeen and D. Wood. Variability in Architectural Simulations of Multi-threaded Workloads. In Proceedings of the 9th
International Symposium on High-Performance Computer Architecture, February 2003.

[6] A. Balan, L. Sigal, and M. Black. A Quantitative Evaluation of Video-based 3D Person Tracking. In IEEE Workshop on VS-
PETS, pages 349–356, 2005.

http://euler.slu.edu/~fritts/mediabench/
http://rogue.colorado.edu/pin/
http://www.elephantsdream.org/

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

241

[7] P. Banerjee. Parallel algorithms for VLSI computer-aided design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[8] J. Barnes and P. Hut. A hierarchical O(N log N)
force-calculation algorithm. Nature, 324:446–449, December 1986.

[9] L. Barroso, K. Gharachorloo, and F. Bugnion. Memory System Characterization of Commercial Workloads. In Proceedings of the 25th
International Symposium on Computer Architecture, pages 3–14, June 1998.

[10] Black, Fischer, and Scholes. The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81:637–659, 1973.

[11] S. Brin, J. Davis, and H. Garcia-Molina. Copy Detection Mechanisms for Digital Documents. In Proceedings of Special Interest Group on
Management of Data, 1995.

[12] M. Desbrun and M.-P. Gascuel. Smoothed Particles: A new paradigm for animating highly deformable bodies. In Computer Animation and
Simulation ’96, pages 61–76, August 1996.

[13] J. Deutscher and I. Reid. Articulated Body Motion Capture by Stochastic Search. International Journal of Computer Vision, 61(2):185–
205, February 2005.

[14] P. Dubey. Recognition, Mining and Synthesis Moves Computers to the Era of Tera. Technology@Intel Magazine, February 2005.

[15] G. Grahne and J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Itemsets. November 2003.

[16] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In W. Chen, J. Naughton, and P. A. Bernstein,
editors, 2000 ACM SIGMOD International Conference on Management of Data, pages 1–12. ACM Press, 05 2000.

[17] D. Heath, R. Jarrow, and A. Morton. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims
Valuation. Econometrica, 60(1):77–105, January 1992.

[18] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann, 2003.

[19] L. Hernquist and N. Katz. TreeSPH - A unification of SPH with the hierarchical tree method. The Astrophysical Journal Supplement Series,
70:419, 1989.

[20] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar,
A. P. Selle, J. Chhugani, M. Holliman, and Y.-K. Chen. Physical Simulation for Animation and Visual Effects: Parallelization and
Characterization for Chip Multiprocessors. SIGARCH Computer Architecture News, 35(2):220–231, 2007.

[21] J. C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, 2005.

[22] A. Jaleel, M. Mattina, and B. Jacob. Last-Level Cache (LLC) Performance of Data-Mining Workloads on a CMP - A Case Study of Parallel
Bioinformatics Workloads. In Proceedings of the 12th International Symposium on High Performance Computer Architecture, February 2006.

[23] Jayaprakash Pisharath and Ying Liu and Wei-keng Liao and Alok Choudhary and Gokhan Memik and Janaki Parhi. NU-Minebench 2.0.
Technical report, Center for Ultra-Scale Computing and Information Security Northwestern University, August 2005.

[24] R. M. Karp and M. O. Rabin. Efficient Randomized Pattern-Matching Algorithms. IBM Journal of Research and Development, 31(2):249–260,
1987.

[25] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and
E. Debes. The ALPBench Benchmark Suite for Complex Multimedia Applications. In Proceedings of the 2005 International
Symposium on Workload Characterization, October 2005.

[26] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. WebDocs: a real-life huge transactional dataset. In 2nd IEEE ICDM
Workshop on Frequent Itemset Mining Implementations 2004, November 2004.

[27] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A Toolkit for Content-Based Similarity Search of Feature-Rich
Data. In Proceedings of the 2006 EuroSys Conference, pages 317–330, 2006.

[28] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity
Search. In Proceedings of the 33rd International Conference on Very Large Data Bases, pages 950–961, 2007.

[29] U. Manber. Finding Similar Files in a Large File System. In Proceedings of the USENIX Winter 1994 Technical Conference, pages
1–10, San Fransisco, CA, USA, October 1994.

[30] K. Martinez and J. Cupitt. VIPS - a highly tuned image processing software architecture. In Proceedings of the 2005 International
Conference on Image Processing, volume 2, pages 574–577, September 2005.

[31] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number
generator. In ACM Transactions on Modeling and Computer Simulation, volume 8, pages 3–30, January 1998.

[32] M. Müller, D. Charypar, and M. Gross. Particle-Based Fluid Simulation for Interactive Applications. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 154–159,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[33] R. Nock and F. Nielsen. Statistical Region Merging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:1452–
1458, 2004.

[34] L. O’Callaghan, A. Meyerson, R. M. N. Mishra, and
S. Guha. High-Performance Clustering of Streams and Large Data Sets. In Proceedings of the 18th International Conference on
Data Engineering, February 2002.

[35] D. Pnueli and C. Gutfinger. Fluid Mechanics. Cambridge University Press, 1992.

[36] S. Quinlan and S. D. Venti. A New Approach to Archival Storage. In Proceedings of the USENIX Conference on File And
Storage Technologies, January 2002.

[37] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a Metric for Image Retrieval. International
Journal of Computer Vision, 40:99–121, 2000.

[38] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic Determination of Facial Muscle Activations from Sparse Motion Capture
Marker Data. ACM Transactions on Graphics, 24(3):417–425, 2005.

[39] N. T. Spring and D. Wetherall. A Protocol-Independent Technique for Eliminating Redundant Network Traffic. In Proceedings
of ACM SIGCOMM, August 2000.

[40] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust Quasistatic Finite Elements and Flesh Simulation. In Proceedings of
the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 181–190, New York, NY, USA, 2005. ACM
Press.

[41] D. Vatolin, D. Kulikov, and A. Parshin. MPEG-4 AVC/H.264 Video Codecs Comparison.
http://compression.ru/video/codec_comparison/pdf/ msu_mpeg_4_avc_h264_co%dec_comparison_2007_eng.pdf, 2007.

http://compression.ru/video/codec_comparison/pdf/

