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ABSTRACT 

The Princeton Application Repository for Shared-Memory 

Computers (PAR-SEC), a benchmark suite for research of 

Chip-Multiprocessors, is introduced and described in this 

work (CMPs). Multiprocessor benchmarks have previously 

been tested using a small selection of synchronisation 

methods and high-performance computing applications. 

Emerging applications in recognition, mining, and synthesis 

(RMS), as well as systems applications that resemble massive, 

multi-threaded commercial programmes, are all included in 

PARSEC. The benchmark suite is heterogeneous in terms of 

working set, localization, data sharing, syn- chronization, and 

off-chip traffic, as demonstrated by our characterization. The 

public can now access the benchmark collection. 

Categories and Subject Descriptors 
D.0 [Software]: [benchmark suite] 

General Terms 
Performance, Measurement, Experimentation 

Keywords 
benchmark suite, performance measurement, multi-threading, 
shared-memory computers 

1. INTRODUCTION 
Benchmarking is the quantitative foundation of computer 
architecture research. Program execution time is the only 
accurate way to measure performance[18]. Without a pro- 
gram selection that provides a representative snapshot of the 
target application space, performance results can be mis- 
leading and no valid conclusions may be drawn from an ex- 
periment outcome. CMPs require a disruptive change in or- der 
for programs to benefit from their full potential. Future 
applications will have to be parallel, but due to the lack of a 
representative, multi-threaded benchmark suite most scien- 
tists were forced to fall back to existing benchmarks. This 
usually meant the use of older High-Performance Comput- ing 
(HPC) workloads, smaller suites with only few programs or 
unparallelized benchmarks. We consider this trend ex- tremely 
dangerous for the whole discipline. Representative conclusions 
require representative experiments and, as we argue in this 
paper, existing benchmark suites cannot be considered 
adequate to describe future CMP applications. 

 

 

 

 

 

 

 

 

 

Large processor manufacturers have already reacted and de- 
veloped their own, internal collections of workloads. An ex- 
ample is the Intel RMS benchmark suite[14]. However, these 

   suites often include proprietary code and are not 
publicly available. To address this problem, we 
created the PAR- SEC benchmark suite in 
collaboration with Intel Corpora- tion. It includes 
not only a number of important appli- cations 
from the RMS suite but also several leading-edge 
applications from Princeton University, Stanford 
University and the open-source domain. The goal 
is to create a suite of emerging workloads that 
can drive CMP research. 

This paper makes three contributions: 

 

We identify shortcomings of commonly used 
bench- mark suites and explain why they 
should not be used to evaluate CMPs. 

We present and characterize PARSEC, a 
new bench- mark suite for CMPs that is 
diverse enough in order to allow 
representative conclusions. 

Based on our characterization of PARSEC, 
we analyze what properties future CMPs 
must have in order to be able to deliver 
scalable performance for emerging 
applications. In particular, our 
understanding of the behavior of future 
workloads allows us to quantify how CMPs 
must be built in order to mitigate the 
effects of the memory wall on the next 
generation of programs. 

 
In Section 2 we describe why existing benchmark 
suites can- not be considered adequate to 
describe future CMP appli- cations. In Section 3, 

• 

• 

• 
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we present the PARSEC benchmark suite and 
explain how it avoids the shortcomings of other 
collections of benchmarks. The methodology 
which we use to characterize our workloads is 
presented in Section 4. In Sections 5 to 8, we 
analyze the parallelization, working sets, 
communication behavior and off-chip traffic of 
the bench- mark programs. We conclude our 
study in Section 9. 

 

2. MOTIVATION 
The goal of this work is to define a benchmark suite 
that can be used to design the next generation of 
processors. In this section, we first present the 
requirements for such a suite. We then discuss 
how the existing benchmarks fail to meet these 
requirements. 

 

  

Multi-threaded Applications Shared-memory CMPs are already 
ubiquitous.    The trend for future processors is to deliver large 
performance improvements through increasing core counts on 
CMPs while only provid- ing modest serial performance 
improvements. Conse- quently, applications that require additional 
process- ing power will need to be parallel. 

Emerging Workloads Rapidly increasing processing power 
is enabling a new class of applications whose compu- 
tational requirements were beyond the capabilities of 
the earlier generation of processors[14]. Such appli- 
cations are significantly different from earlier applica- 
tions (see Section 3). Future processors will be de- 
signed to meet the demands of these emerging appli- 
cations and a benchmark suite should represent them. 

Diverse Applications are increasingly diverse, run on a va- 
riety of platforms and accommodate different usage 
models. They include both interactive applications 
like computer games, offline applications like data min- 
ing programs and programs with different paralleliza- 
tion models. Specialized collections of benchmarks can 
be used to study some of these areas in more detail, 
but decisions about general-purpose processors should 
be based on a diverse set of applications. While a truly 
representative suite is impossible to create, reasonable 
effort should be made to maximize the diversity of the 
program selection. The number of benchmarks must 
be large enough to capture a sufficient amount of char- 
acteristics of the target application space. 

Employ State-of-Art Techniques A number of applica- 
tion domains have changed dramatically over the last 
decade and use very different algorithms and tech- 
niques. Visual applications for example have started 
to increasingly integrate physics simulations to gener- 
ate more realistic animations[20]. A benchmark should 
not only represent emerging applications but also use 
state-of-art techniques. 

Support Research A benchmark suite intended for research 
has additional requirements compared to one used for 
benchmarking real machines alone. Benchmark suites 
intended for research usually go beyond pure scoring 
systems and provide infrastructure to instrument, ma- 
nipulate, and perform detailed simulations of the in- 
cluded programs in an efficient manner. 

 

 Limitations of Existing Benchmark Suites 
In the remaining part of this section we analyze how existing 
benchmark suites fall short of the presented requirements 
and must thus be considered unsuitable for evaluating CMP 
performance. 

 

SPLASH-2 SPLASH-2 is a suite composed of multi-threaded 
applications[44] and hence seems to be an ideal candi- date to 
measure performance of CMPs. However, its program collection is 
skewed towards HPC and graph- 
ics programs. It thus does not include parallelization models such 
as the pipeline model which are used in other application areas. 
SPLASH-2 should further- more not be considered state-of-art 
anymore.   Barnes 
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for example implements the Barnes-Hut 
algorithm for N-body simulation[8]. For 
galaxy simulations it has largely been 
superseded by the TreeSPH[19] method, 
which can also account for mass such as 
dark matter which is not concentrated in 
bodies. However, even for pure N-body 
simulation barnes must be consid- ered 
outdated. In 1995 Xu proposed a hybrid 
algo- rithm which combines the 
hierarchical tree algorithm and the Fourier-
based Particle-Mesh (PM) method to the 
superior TreePM method[45]. Our analysis 
shows that similar issues exist for a number 
of other applica- tions of the suite including 
raytrace and radiosity. 

SPEC CPU2006 and OMP2001 SPEC CPU2006 and 
SPEC OMP2001 are two of the largest and 
most signif- icant collections of benchmarks. 
They provide a snap- shot of current 
scientific and engineering applications. 
Computer architecture research, however, 
commonly focuses on the near future and 
should thus also con- sider emerging 
applications. Workloads such as sys- tems 
programs and parallelization models which 
em- ploy the producer-consumer model are 
not included. SPEC CPU2006 is furthermore a 
suite of serial pro- grams that is not intended 
for studies of parallel ma- chines. 

Other Benchmark Suites Besides these major 
benchmark suites, several smaller suites 
exist. They were usually designed to study a 
specific program area and are thus limited to 
a single application domain. Therefore they 
usually include a smaller set of applications 
than a di- verse benchmark suite typically 
offers. Due to these limitations they are 
commonly not used for scientific studies 
which do not restrict themselves to the cov- 
ered application domain. Examples for these 
types of benchmark suites are 
ALPBench[25], BioParallel[22], 
MediaBench[1], NU-MineBench[23] and PhysicsBench[46]. 
Because of their different focus we do not 
discuss these suites in more detail. 

 

3. THE PARSEC BENCHMARK SUITE 
One of the goals of the PARSEC suite was to 
assemble a program selection that is large and 
diverse enough to be sufficiently representative 
for scientific studies. It consists of 9 applications 
and 3 kernels which were chosen from a wide 
range of application domains. In Table 1 we 
present a qualitative summary of their key 
characteristics. PARSEC workloads were selected 
to include different combinations of parallel 
models, machine requirements and runtime 
behav- iors. 

PARSEC meets all the requirements outlined in Section 2.1: 

 

• Each of the applications has been parallelized. 

The PARSEC benchmark suite is not skewed towards 
HPC programs, which are abundant but represent only 
a niche. It focuses on emerging workloads. The algo- 
rithms these programs implement are usually consid- 
ered useful, but their computational demands are pro- 
hibitively high on contemporary platforms. As more 
powerful processors become available in the near fu- 
ture, they are likely to proliferate rapidly. 

• 
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Program Application Domain 

Parallelization 
Working Set 

Data Usage 
Model Granularity Sharing Exchange 

blackscholes Financial Analysis data-parallel coarse small low low 
bodytrack Computer Vision data-parallel medium medium high medium 
canneal Engineering unstructured fine unbounded high high 
dedup Enterprise Storage pipeline medium unbounded high high 
facesim Animation data-parallel coarse large low medium 
ferret Similarity Search pipeline medium unbounded high high 
fluidanimate Animation data-parallel fine large low medium 
freqmine Data Mining data-parallel medium unbounded high medium 
streamcluster Data Mining data-parallel medium medium low medium 
swaptions Financial Analysis data-parallel coarse medium low low 
vips Media Processing data-parallel coarse medium low medium 
x264 Media Processing pipeline coarse medium high high 

 

Table 1: Qualitative summary of the inherent key characteristics of PARSEC benchmarks. Working sets 
and data usage patterns are explained and quantified in later sections. The pipeline model is a data-parallel 
model which also uses a functional partitioning. PARSEC workloads were chosen to cover different application 
domains, parallel models and runtime behaviors. 

 

The workloads are diverse and were chosen from many 
different areas such as computer vision, media pro- 
cessing, computational finance, enterprise servers and 
animation physics. 

Each of the applications chosen represents the state- 
of-art technique in its area. 

PARSEC supports computer architecture research in 
a number of ways. The most important one is that for 
each workload six input sets with different properties 
are defined. Three of these inputs are suitable for mi- 
croarchitectural simulation. We explain the different 
types of input sets in more detail in Section 3.1. 

 

 Input Sets 
PARSEC defines six  input sets  for each  benchmark: 

inputs most closely. The remaining input sets can be con- 
sidered coarser approximations which sacrifice accuracy for 
tractability. Table 2 shows a breakdown of instructions and 
synchronization primitives of the simlarge input set which 
we used for the characterization study. 

 

 Workloads 
The following workloads are part of the PARSEC suite: 

 

 blackscholes 
The blackscholes application is  an  Intel  RMS  benchmark. 
It calculates the prices for a portfolio of European options 
analytically with the Black-Scholes partial differential equa- 
tion (PDE)[10] 

∂V  
+ 

1   2   2 ∂2V ∂V 

test A very small input set to test the basic functionality ∂t 2 
ς S

 ∂S2   + rS 
∂S  

− rV  = 0 

of the program. 

simdev A very small input set which guarantees basic pro- 
gram behavior similar to the real behavior, intended 
for simulator test and development. 

simsmall, simmedium and simlarge Input sets of different 
sizes suitable for microarchitectural studies with sim- 
ulators. 

native A large input set intended for native execution. 

 

test and simdev are merely intended for testing and devel- 
opment and should not be used for scientific studies. The 
three simulator inputs for studies vary in size, but the gen- 
eral trend is that larger input sets contain bigger working 
sets and more parallelism. Finally, the native input set is 
intended for performance measurements on real machines 
and exceeds the computational demands which are gener- 
ally considered feasible for simulation by orders of magni- 
tude. From a scientific point of view, the native input set is 
the most interesting one because it resembles real program 

where V is an option on the underlying S with volatility ς at 
time t if the constant interest rate is r. There is no closed- 
form expression for the Black-Scholes equation and as such 
it must be computed numerically[21]. The blackscholes 
benchmark was chosen to represent the wide field of ana- 
lytic PDE solvers in general and their application in com- 
putational finance in particular. The program is limited by 
the amount of floating-point calculations a processor can 
perform. 

 
blackscholes stores the portfolio with numOptions deriva- 
tives in array OptionData. The program includes file option- 
Data.txt which provides the initialization and control ref- 
erence values for 1,000 options which are stored in array 
data init. The initialization data is replicated if necessary 
to obtain enough derivatives for the benchmark. 

 
The program divides the portfolio into a number of work 
units equal to the number of threads and processes them 
concurrently. Each thread iterates through all derivatives in 
its contingent and calls function BlkSchlsEqEuroNoDiv for 
each of them to compute its price. If error checking was 

• 

• 

• 
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t,m 

i=1 

t,m 

t,m 

P 

 
Program Problem Size 

Instructions (Billions) Synchronization Primitives 
Total FLOPS Reads Writes Locks Barriers Conditions 

blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0 
bodytrack 4 frames, 4,000 particles 14.03 4.22 3.63 0.95 114,621 619 2,042 
canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0 
dedup 184 MB data 37.1 0 11.71 3.13 158,979 0 1,619 
facesim 1 frame, 

372,126 tetrahedra 
29.90 9.10 10.05 4.29 14,541 0 3,137 

ferret 256 queries, 
34,973 images 

23.97 4.51 7.49 1.18 345,778 0 1255 

fluidanimate 5 frames, 
300,000 particles 

14.06 2.49 4.80 1.15 17,771,909 0 0 

freqmine 990,000 transactions 33.45 0.00 11.31 5.24 990,025 0 0 
streamcluster 16,384 points per block, 

1 block 
22.12 11.6 9.42 0.06 191 129,600 127 

swaptions 64 swaptions, 
20,000 simulations 

14.11 2.62 5.08 1.16 23 0 0 

vips 1 image, 
2662 × 5500 pixels 

31.21 4.79 6.71 1.63 33,586 0 6,361 

x264 128 frames, 
640 × 360 pixels 

32.43 8.76 9.01 3.11 16,767 0 1,056 

 

Table 2: Breakdown of instructions and synchronization primitives for input set simlarge on a system with 
8 cores. All numbers are totals across all threads. Numbers for synchronization primitives also include 
primitives in system libraries. ’Locks’ and ’Barriers’ are all lock- resp. barrier-based synchronizations, 
’Conditions’ are all waits on condition variables. 

 

enabled at compile time it also compares the result with the 
reference price. 

 
The input sets for blackscholes are sized as follows: 

 
• test: 1 option 

• simdev: 16 options 

• simsmall: 4,096 options 

• simmedium: 16,384 options 

• simlarge: 65,536 options 

1. The image features of observation Zt are extracted. 
The features will be used to compute the likelihood of 
a given pose in the annealed particle filter. 

2. Every time step t the filter makes an annealing run 
through all M annealing layers, starting with layer 
m = M . 

3. Each layer m uses a set of N unweighted particles 
which are the result of the previous filter update step 
to begin with. 

 
S = {( (1) )...( (N))}. 

• native: 10,000,000 options 
t,m 

 
( ) 

st,m st,m 

Each particle s 
i
 is an instance of the multi-variate 

 bodytrack 
The bodytrack computer vision application is an Intel RMS 

model configuration X which encodes the location and 
state of the tracked body. 

workload which tracks a 3D pose of a marker-less human 4. Each particle  (i)  (i) 

body with multiple cameras through an image sequence[13, 
6]. bodytrack employs an annealed particle filter to track 
the pose using edges and the foreground silhouette as im- 
age features, based on a 10 segment 3D kinematic tree body 
model. These two image features were chosen because they 

st,m is then assigned a weight πt,m by us- 
ing weighting function ω(Zt, X) corresponding to the 
likelihood of X given the image features in Zt scaled 
by an annealing level factor: 

exhibit a high degree of invariance under a wide range of (i) (i) 

conditions and because they are easy to extract. An an- 
nealed particle filter was employed in order to be able to 
search high dimensional configuration spaces without hav- 
ing to rely on any assumptions of the tracked body such as 
the existence of markers or constrained movements. This 

πt,m ∝ ω(Zt, st,m). 

The weights are normalized so that 
N

 
The result is the weighted particle set 

 
 

(i) 
t,m 

 

= 1. 

benchmark was included due to the increasing significance  π (1)  (1)  (N )  (N ) 

of computer vision algorithms in areas such as video surveil- 
lance, character animation and computer interfaces. 

St,m = {(st,m, πt,m)...(st,m, πt,m )}. 

5. N particles are randomly drawn from set S
π
 

 

with 

For every frame set Zt of the input videos at time step t, a probability equal to their weight π(i) to obtain the 
the bodytrack benchmark executes the following steps: temporary weighted particle set 

π 
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× 

t,0 

t,m 

t,m 

t st,0 t,0 

t,m 

st,m  t,m st,m t,m 

 

 
¯π 

t,m 
 

Each particle 

 
= {(¯(1) , π(1) )...(¯(N), π(N))}. 

s̄(i)   is  then  used  to  produce  particle 

bodytrack has a persistent thread pool which is implemented 
in class WorkPoolPthread. The main thread executes the 
program and sends a task to the thread pool with method 
SignalCmd whenever it reaches a parallel kernel. It resumes 
execution of the program as soon as it receives the result 
from the worker threads.  Possible tasks are encoded by enu- 

(i) (i) meration threadCommands in class WorkPoolPthread.  The 
st,m−1  = s̄t,m  + Bm 

where Bm  is a multi-variate Gaussian random vari- 

program has three parallel kernels: 

able. The result is particle set S
π
 which is used to 

initialize layer m − 1. 
t,m−1 Edge detection (Step 1) bodytrack employs a gradient 

based edge detection mask to find edges. The result 

6. The process is repeated until all layers have been pro- 
cessed and the final particle set S

π
 has been com- 

is compared against a threshold to eliminate spuri- 
ous edges. Edge detection is implemented in function 

puted. 
t,0 GradientMagThreshold.  The output of this kernel will 

be further refined before it is used to compute the par- 
π 
t,0 is used to compute the estimated model configu- ticle weights. 

ration χt for time step t by calculating the weighted 
average of all configuration instances: 

 
N 

Edge smoothing (Step 1) A separable Gaussian filter of 
size 7 7 pixels is used to smooth the edges in function 
GaussianBlur. The result is remapped between 0 and 
1 to produce a pixel map in which the value of each 

χ = 
X

 

(i) π(i). 

8. The set St+1,M is then produced from S
π
 using 

one to filter image columns. 

Calculate particle weights (Step 4) This  kernel  evalu- 
 (i)  (i) ates the foreground silhouette and the image edges pro- 

st+1,M = st,0 + B0. 

In the subsequent time step t+1 the set St+1,M is used 
to initialize layer M. 

 

The likelihood ω(Zt, s
(i) 

) which is used to determine the 

particle weights π(i) is computed by projecting the geom- 
etry of the human body model into the image observations 
Zt for each camera and determining the error based on the 
image features. The likelihood is a measure of the 3D body 
model alignment with the foreground and edges in the im- 
ages. The body model consists of conic cylinders to rep- 
resent 10 body parts 2 for each limb plus the torso and 
the head. Each cylinder is represented by a length and a 
radius for each end. The body parts are assembled into a 
kinematic tree based upon the joint angles. Each particle 
represents the set of joint angles plus a global translation. 
To evaluate the likelihood of a given particle, the geometry 
of the body model is first built in 3D space given the angles 
and translation. Next, each 3D body part is projected onto 
each of the 2D images as a quadrilateral. A likelihood value 
is then computed based on the two image features the fore- 
ground map and the edge distance map. To compute the 
foreground term, samples are taken within the interior of 
each 2D body part projection and compared with the bi- 
nary foreground map images. Samples that correspond to 
foreground increase the likelihood while samples that corre- 
spond to background are penalized. The edge map gives a 
measure of the distance from an edge in the image - values 
closer to an edge have a higher value. To compute the edge 
term samples are taken along the axis-parallel edges of each 
2D body part projection and the edge map values at each 
sample are summed together. In this way, samples that are 
closer to edges in the images increase the likelihood while 
samples farther from edges are penalized. 

duced earlier to compute the weights for the particles. 
This kernel is executed once for every annealing layer 
during every time step, making it the computationally 
most intensive part of the body tracker. 

 

The parallel kernels use tickets to distribute the work among 
threads balance the load dynamically. The ticketing mecha- 
nism is implemented in class TicketDispenser and behaves 
like a shared counter. 

 
The input sets for bodytrack are defined as follows: 

 
• test: 4 cameras, 1 frame, 5 particles, 1 annealing layer 

simdev: 4 cameras, 1 frame, 100 particles, 3 annealing 
layers 

simsmall: 4 cameras, 1 frame, 1,000 particles, 5 an- 
nealing layers 

simmedium: 4 cameras, 2 frames, 2,000 particles, 5 an- 
nealing layers 

simlarge: 4 cameras, 4 frames, 4,000 particles, 5 an- 
nealing layers 

native: 4 cameras, 261 frames, 4,000 particles, 5 an- 
nealing layers 

 
 canneal 

This kernel was developed by Princeton University. It uses 
cache-aware simulated annealing (SA) to minimize the rout- 
ing cost of a chip design[7]. SA is a common method to 
approximate the global optimum in a large search space. 
Canneal pseudo-randomly picks pairs of elements and tries 

7. S 

• 

• 

• 

• 

• 

i=1 

pixel is related to its distance from an edge. The kernel 
has two parallel phases, one to filter image rows and 

S 
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to swap them. To increase data reuse, the algorithm dis- 
cards only one element during each iteration which effec- 
tively reduces cache capacity misses. The SA method ac- 
cepts swaps which increase the routing cost with a certain 
probability to make an escape from local optima possible. 
This probability continuously decreases during runtime to 
allow the design to converge. The program was included 
in the PARSEC program selection to represent engineering 
workloads, for the fine-grained parallelism with its lock-free 
synchronization techniques and due to its pseudo-random 
worst-case memory access pattern. 

canneal uses a very aggressive synchronization strategy that 
is based on data race recovery instead of avoidance. Pointers 
to the elements are dereferenced and swapped atomically, 
but no locks are held while a potential swap is evaluated. 
This can cause disadvantageous swaps if one of the relevant 
elements has been replaced by another thread during that 
time. This equals a higher effective probability to accept 
swaps which increase the routing cost, and the SA method 
automatically recovers from it. The swap operation employs 
lock-free synchronization which is implemented with atomic 
instructions.   An alternative implementation which relied 
on conventional locks turned out to be too inefficient due 
to excessive locking overhead. The synchronization routines 
with the atomic instructions are taken from the BSD kernel. 
Support for most new architectures can be added easily by 
copying the correct header file from the BSD kernel sources. 

 
The annealing algorithm is implemented in the Run function 
of the annealer thread class. Each thread uses the func- 
tion get random element to pseudo-randomly pick one new 
netlist element per iteration with a Mersenne Twister[31]. 
calculate delta routing cost is called to compute the 
change of the total routing cost if the two elements are 
swapped. accept move evaluates the change in cost and the 
current temperature and decides whether the change is to be 
committed. Finally, accepted swaps are executed by calling 
swap locations. 

 
canneal implements an AtomicPtr class which encapsulates 
a shared pointer to the location of a netlist element. The 
pointer is atomically accessed and modified with the Get 
and Set functions offered by the class. A special Swap mem- 
ber function executes an atomic swap of two encapsulated 
pointers. If an access is currently in progress the functions 
spin until the operation could be completed. The implemen- 
tation of Swap imposes a partial order to avoid deadlocks by 
processing the pointer at the lower memory location first. 

 
We provide the following input sets for canneal: 

 

test:   5  swaps  per  temperature  step,  100◦  start  tem- 
perature, 10 netlist elements 

simdev:   100  swaps  per  temperature  step,  300◦  start 
temperature, 100 netlist elements 

simsmall:  10,000  swaps  per  temperature  step,  2, 000◦ 
start temperature, 100,000 netlist elements 

simmedium:  15,000 swaps per temperature step, 2, 000◦ 
start temperature, 200,000 netlist elements 

simlarge:  15,000  swaps  per  temperature  step,  2, 000◦ 
start temperature, 400,000 netlist elements 

native:   15,000  swaps  per  temperature  step,  2, 000◦ 
start temperature, 2,500,000 netlist elements 

 

 dedup 
The dedup kernel was developed by Princeton University. 
It compresses a data stream with a combination of global 
compression and local compression in order to achieve high 
compression ratios. Such a compression is called ’dedupli- 
cation’. The reason for the inclusion of this kernel is that 
deduplication has become a mainstream method to com- 
press storage footprints for new-generation backup storage 
systems[36] and to compress communication data for new- 
generation bandwidth optimized networking appliances[39]. 

 
The kernel uses a pipelined programming model to paral- 
lelize the compression to mimic real-world implementations. 
There are five pipeline stages the intermediate three of which 
are parallel. In the first stage, dedup reads the input stream 
and breaks it up into coarse-grained chunks to get indepen- 
dent work units for the threads. The second stage anchors 
each chunk into fine-grained small segments with rolling fin- 
gerprinting[29, 11]. The third pipeline stage computes a 
hash value for each data segment. The fourth stage com- 
presses each data segment with the Ziv-Lempel algorithm 
and builds a global hash table that maps hash values to 
data. The final stage assembles the deduplicated output 
stream consisting of hash values and compressed data seg- 
ments. 

 
Anchoring is a method which identifies brief sequences in a 
data stream that are identical with sufficiently high prob- 
ability. It uses fast Rabin-Karp fingerprints[24] to detect 
identity. The data is then broken up into two separate 
blocks at the determined location. This method ensures 
that fragmenting a data stream is unlikely to obscure du- 
plicate sequences since duplicates are identified on a block 
basis. 

dedup uses a separate thread pool for each parallel pipeline 
stage. Each thread pool should at least have a number of 
threads equal to the number of available cores to allow the 
system to fully work on any stage should the need arise. 
The operating system scheduler is responsible for a thread 
schedule which will maximize the overall throughput of the 
pipeline. In order to avoid lock contention, the number of 
queues is scaled with the number of threads, with a small 
group of threads sharing an input and output queue at a 
time. 

 
dedup employs the following five kernels, one for each pipeline 
stage: 

 
Coarse-grained fragmentation This serial kernel   takes 

the input stream and breaks it up into work units 
which can be processed independently from each other 
by the parallel pipeline stages of dedup. It is imple- 
mented in function DataProcess. First, the kernel 
reads the input file from disk. It then determines the 
locations where the data is to be split up by jumping a 
fixed length in the buffer for each chunk. The resulting 

• 

• 

• 

• 

• 

• 
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data blocks are enqueued in order to be further refined 
by the subsequent stage. 

 
Fine-grained fragmentation  This parallel kernel uses Rabin- 

Karp fingerprints to break a coarse-grained data chunk 
up into fine-grained fragments. It scans each input 
block starting from the beginning. An anchor is found 
if the lowest 12 bits of the Rabin-Karp hash-sum are 0. 
The data is then split up at the location of the anchor. 
On average, this produces blocks of size 212/8 = 512 
bytes. The fine-grained data blocks are sent to the 
subsequent pipeline stage to compute their checksum. 
This kernel is implemented in function FindAllAnchor. 

 
Hash computation To uniquely identify a fine-grained data 

block, this parallel kernel computes the SHA1 check- 
sum of each chunk and checks for duplicate blocks with 
the use of a global database. It is implemented in func- 
tion ChunkProcess. A hash table   which   is   indexed 
with   the   SHA1   sum   serves   as   the   database.     Each 
bucket of the hash table is associated with an inde- 
pendent lock in order to synchronize accesses. The 
large number of buckets and therefore locks makes the 
probability of lock contention very low in practice. 

Once the SHA1 sum of a data block is available, the 
kernel checks whether a corresponding entry already 
exists in the database. If no entry could be found, the 
data block is added to the hash table and sent to the 
compression stage. If an entry already exists the block 
is classified as a duplicate. The compression stage is 
omitted and the block is sent directly to the pipeline 
stage which assembles the output stream. 

 
Compression This kernel compresses data blocks in par- 

allel. It is implemented in function Compress.   Once 
the compressed image of a data block is available it 
is added to the database and the corresponding data 
block is sent to the next pipeline stage. Every data 
block is compressed only once because the previous 
stage does not send duplicates to the compression stage. 

 
Assemble output stream This serial kernel reorders the 

data blocks and produces a compressed output stream. 
It   is   implemented   in   the   SendBlock   function.     The 
stages which fragment the input stream into fine-grained 
data blocks add sequence numbers to allow a recon- 
struction of the original order. Because data fragmen- 
tation occurs in two different pipeline stages, two lev- 
els of sequence numbers have to be considered - one 
for each granularity level. SendBlock uses a   search 
tree for the first level and a heap for the second level. 
The search tree allows rapid searches for the correct 
heap corresponding to the current first-level sequence 
number. For second-level sequence numbers only the 
minimum has to be found and hence a heap is used. 

Once the next data block in the sequence becomes 
available it is removed from the reordering structures. 
If it has not been written to the output stream yet, 
its compressed image is emitted. Otherwise it is a du- 
plicate and only its SHA1 signature is written as a 
placeholder. The kernel uses the global hash table to 
keep track of the output status of each data block. 

Each input for dedup is an archive which contains a selection 
of files. The archives have the following sizes: 

 
• test: 10 KB 

• simdev: 1.1 MB 

• simsmall: 10 MB 

• simmedium: 31 MB 

• simlarge: 184 MB 

• native: 672 MB 

 facesim 
This Intel RMS application was originally developed by Stan- 
ford University. It takes a model of a human face and a time 
sequence of muscle activations and computes a visually real- 
istic animation of the modeled face by simulating the under- 
lying physics[38, 40]. The goal is to create a visually realis- 
tic result. Certain effects such as inertial movements would 
have only a small visible effect and are not simulated[20]. 
The workload was included in the benchmark suite because 
an increasing number of computer games and other forms 
of animation employ physical simulation to create more re- 
alistic virtual environment. Human faces in particular are 
observed with more attention from users than other details 
of a virtual world, making their realistic presentation a key 
element for animations. 

The parallelization uses a static partitioning of the mesh. 
Data that spans nodes belonging to more than one parti- 
tion is replicated. Every time step the partitions process 
all elements that contain at least one node owned by the 
particle, but only results for nodes which are owned by the 
partition are written. 

 
The iteration which computes the state of the face mesh at 
the end of each iteration is implemented in function Advance - 
One Time Step Quasistatic. facesim employs the fork-join 
model to process computationally intensive tasks in parallel. 
It uses the following three parallel kernels for its computa- 
tions: 

 
Update state This kernel uses the Newton-Raphson meth- 

od to solve the nonlinear system of equations in order 
to find the steady state of the simulated mesh. This 
quasi-static scheme achieves speedups of one to two or- 
ders of magnitudes over explicit schemes by ignoring 
inertial effects. It is not suitable for the simulation of 
less constrained phenomena such as ballistic motion, 
but it is sufficiently accurate to simulate effects such 
as flesh deformation where the material is heavily in- 
fluenced by contact, collision and self-collision and in- 
ertial effects only have a minor impact on the state. 

In each Newton-Raphson iteration, the kernel reduces 
the nonlinear system of equations to a linear system 
which is guaranteed to be positive definite and sym- 
metric. These two properties allow the use of a fast 
conjugate gradient solver later on. One iteration step 
is computed by function Update Position Based State. 
The matrix of the linear system is sparse and can hence 
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be stored in two one-dimensional arrays - dX full and 
R full. The matrix is the sum of the contribution of 
each tetrahedron of the face mesh. 

Add forces This module computes the velocity-independent 
forces acting on the simulation mesh. After the ma- 
trix of the linear system with the position-independent 
state has been computed by the previous kernel, the 
right-hand side of that system has to be calculated. 
The kernel does this by iterating over all tetrahedra 
of the mesh, reading the positions of the vertices and 
computing the force contribution to each of the four 
nodes. 

Conjugate gradient This kernel uses the conjugate gra- 
dient algorithm to solve the linear equation system as- 
sembled by the previous two modules. The two arrays 
dX full and R full which store the sparse matrix are 
sequentially accessed and matrix-vector multiplication 
is employed to solve the system. 

 
The input sets of facesim all use the same face mesh. Scal- 
ing down the resolution of the mesh to create more tractable 
input sizes is impractical. A reduction of the number of el- 
ements in the model would result in under-resolution of the 
muscle action and cause problems for collision detection[20]. 

from every segment. A feature vector is a multi-dimensional 
mathematical description of the segment contents. It en- 
codes fundamental properties such as color, shape and area. 
Once the feature vectors are known, the indexing stage can 
query the image database to obtain a candidate set of im- 
ages. The database is organized as a set of hash tables 
which are indexed with multi-probe LSH[28]. This method 
uses hash functions which map similar feature vectors to 
the same hash bucket with high probability. Because the 
number of hash buckets is very high, multi-probe LSH first 
derives a probing sequence which considers the success prob- 
abilities for finding a candidate image in a bucket. It then 
employs a step-wise approach which indexes buckets with 
a higher success probability first. After a candidate set of 
images has been obtained by the indexing stage, it is sent to 
the ranking stage which computes a detailed similarity es- 
timate and orders the images according to their calculated 
rank. The similarity estimate is derived by analyzing and 
weighing the pair-wise distances between the segments of 
the query image and the candidate images. The underlying 
metric employed is the Earth Mover’s Distance (EMD)[37]. 
For two images X and Y , it is defined as 

 

EMD(X, Y ) = min 
X X 

fijd(Xi, Yj ) 
i j 

Our input sets for facesim are defined as follows: 

 
• test: Print out help message. 

• simdev: 80,598 particles, 372,126 tetrahedra, 1 frame 

• simsmall: Same as simdev 

• simmedium: Same as simdev 

• simlarge: Same as simdev 

• native: Same as simdev, but with 100 frames 

 ferret 
This application is based on the Ferret toolkit which is used 
for content-based similarity search of feature-rich data such 
as audio, images, video, 3D shapes and so on[27]. It was 
developed by Princeton University. The reason for the in- 
clusion in the benchmark is that it represents emerging next- 
generation desktop and Internet search engines for non-text 
document data types. In the benchmark, we have configured 
the Ferret toolkit for image similarity search. Ferret is par- 
allelized using the pipeline model with six stages. The first 
and the last stage are for input and output. The middle four 
stages are for query image segmentation, feature extraction, 
indexing of candidate sets with multi-probe Locality Sen- 
sitive Hashing (LSH)[28] and ranking. Each stage has its 
own thread pool and the basic work unit of the pipeline is 
a query image. 

Segmentation is the process of decomposing an image into 
separate areas which display different objects. The rationale 
behind this step is that in many cases only parts of an image 
are of interest, such as the foreground. Segmentation allows 
the subsequent stages to assign a higher weight to image 
parts which are considered relevant and seem to belong to- 
gether. After segmentation, ferret extracts a feature vector 

where Xi and Yj denote segments of X and Y and fij is the 
extent to which Xi is matched to Yj . 

 
The first and the last pipeline stage of ferret are serial. 
The remaining four modules are parallel: 

 
Image segmentation This kernel uses computer vision tech- 

niques to break an image up into non-overlapping seg- 
ments. The pipeline stage is   implemented   in   func- 
tion t seg, which calls image segment for every image. 
This function uses statistical region merging (SRM)[33] 
to segment the image. This method organizes the pix- 
els of an image in sets, starting with a fine-granular 
decomposition. It repeatedly merges them until the 
final segmentation has been reached. 

Feature extraction This module computes a 14-dimen- 
sional feature vector for each image segment. The fea- 
tures extracted are the bounding box of the segment 
(5 dimensions) and its color moments (9 dimensions). 
A bounding box is the minimum axis-aligned rectan- 
gle which includes the segment. Color moments is a 
compact representation of the color distribution. It 
is conceptually similar to a histogram but uses fewer 
dimensions. Segments are assigned a weight which 
is proportional to the square root of its size. This 
stage is implemented in function t extract. It calls 
image extract helper to compute the feature vectors 
for every image. 

Indexing The indexing stage queries the image database to 
obtain no more than twice the number of images which 
are allowed to appear in the final ranking. This stage 
is implemented in function t vec. ferret manages im- 
age data in tables which have type cass table t. Ta- 
bles can be queried with function cass table query. 
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−∇ ∇ 

∂t 

Wpoly6(r, h) = 
64πh9 

A  (r) = 
X 

m W (r − r , h). 

 

The indexing stage uses this function to access the 
database in order to generate the candidate set of type 
cass result t for the current query image. Indexing 
employs LSH for the probing which is implemented in 
function LSH query. 

Ranking This module performs a detailed similarity com- 
putation. From the candidate set obtained by the in- 
dexing stage it chooses the final set of images which 
are most similar to the query image and ranks them. 
The ranking stage is implemented in function t rank. 
It employs cass table query to analyze the candidate 
set and to compute the final ranking with EMD. The 
type of query that cass table  query is to perform can 
be described with a structure of type cass query t. 

 

The number of query images determine the amount of par- 
allelism. The working set size is dominated by the size of 
the image database. The input sets for ferret are sized as 
follows: 

 

test: 1 image queries, database with 1 image, find top 
1 image 

simdev: 4 image queries, database with 100 images, 
find top 5 images 

state of the fluid at discrete locations and interpolates inter- 
mediate values with radial symmetrical smoothing kernels. 
An advantage of this method is the automatic conservation 
of mass due to a constant number of particles, but it alone 
does not guarantee certain physical principals such as sym- 
metry of forces which have to be enforced separately. The 
SPH algorithm derives a scalar quantity A at location r by 
a weighted sum of all particles: 

 
 

Aj 
S  j  j 

j  j 

 
In the equation, j iterates over all particles, mj is the mass 
of  particle  j,  rj    its  position,  ρj    the  density  at  its  location 
and Aj the respective field quantity. W (r rj, h) is the 
smoothing kernel to use for the interpolation with core ra- 
dius h. Smoothing kernels are employed in order to make 
the SPH method stable and accurate.  Because each particle 
i represents a volume with constant mass mi, the density 
ρi appears in the equation and has to be recomputed every 
time step. The density at a location r can be calculated by 
substituting A with ρ in the previous equation: 

 

ρS (r) = 
X 

mj W (r − rj, h) 
simsmall:  16 image queries, database with 3,544 im- j 

ages, find top 10 images . 

simmedium: 64 image queries, database with 13,787 
images, find top 10 images 

simlarge: 256 image queries, database with 34,973 
images, find top 10 images 

native: 3,500 image queries, database with 59,695 im- 
ages, find top 50 images 

Applying the SPH interpolation equation to the pressure 
term p and the viscosity term µ 2 of the Navier-Stokes 
equation yields the equations for the pressure and viscosity 
forces, but in order to solve the force symmetry problems of 
the SPH method, fluidanimate employs slightly modified 
formulas: 

 
 fluidanimate fpressure = − 

X 
m pi  + pj ∇W (r 

 
 

— r , h) 

This Intel RMS application uses an extension of the Smoothed 
Particle Hydrodynamics (SPH) method to simulate an in- 
compressible fluid for interactive animation purposes[32]. Its 

i j   
2ρ 

i j 
j 

output can be visualized by detecting and rendering the 
fviscosity = µ 

X 
m 

vi  − vj 
∇

2
W (r 

 

 

— r , h) 

surface of the fluid.    The force density fields are derived 
directly from the  Navier-Stokes  equation. fluidanimate 
uses special-purpose kernels to increase stability and speed. 
fluidanimate was included in the PARSEC benchmark suite 
because of the increasing significance of physics simulations 
for computer games and other forms of real-time animations. 

 
A simplified version of the Navier-Stokes equation for incom- 
pressible fluids[35] which formulates conservation of momen- 
tum is 

 
 

ρ( 
∂v 

+ v · ∇v) = −∇p + ρg + µ∇
2
v 

where v is a velocity field, ρ a density field, p a pressure 
field, g an external force density field and µ the viscosity 
of the fluid. The SPH method uses particles to model the 

i j i j 

j j 

 

Stability, accuracy and speed of fluidanimate are highly 
dependent on its smoothing kernels. In all cases but the 
pressure and viscosity computations the program uses the 
following kernel: 

 

  315    
(

(h2 − r2)3     0 ≤ r ≤ h 
 

One feature of this kernel is that the distance r only ap- 
pears squared.   The computation of square roots is thus 
not necessary to evaluate it. For pressure computations, 
fluidanimate  uses  Desbrun’s  spiky  kernel  Wspiky[12]  and 
Wviscosity for viscosity forces: 

0 else 

ρ 

j 

• 

• 

• 

• 

• 

• 
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3  + 

r
2 +  

h
  − 1    0 ≤ r ≤ h 

 

 15  
(

(h − r)3     0 ≤ r ≤ h 
• test: 5,000 particles, 1 frame 
• simdev: 15,000 particles, 3 frames 

Wspiky(r, h) = 
πh6 

0 else 
• simsmall: 35,000 particles, 5 frames 

(  3 2 
 

  
 

 

• simmedium: 100,000 particles, 5 frames 
 

 
 πh 0 else 

 
The scene geometry employed by fluidanimate is a box in 
which the fluid resides. All collisions are handled by adding 
forces in order to change the direction of movement of the 
involved particles instead of modifying the velocity directly. 
The workload uses Verlet integration[42] to update the posi- 
tion of the particles. This scheme does not store the velocity 
of the particles explicitly, but their previous location in addi- 
tion to the current position. The current velocity can thus 
be deduced from the distance traveled since the last time 
step. The force and mass are then used to compute the ac- 
celeration and subsequently the new velocity. This scheme 
is more robust because the velocity is implicitly given. 

 
Every time step, fluidanimate executes  five  kernels,  the 
first two of which were further broken up into several smaller 
steps: 

 
Rebuild spatial index Because the smoothing kernels 

W (r rj, h) have finite support h, particles can only 
interact with each other up to the distance h. The 
program uses a spatial indexing structure in order to 
exploit proximity information and limit the number 
of particles which have to be evaluated. Functions 
ClearParticles and RebuildGrid build this accelera- 
tion structure which is used by the subsequent steps. 

Compute densities This kernel estimates the fluid den- 
sity at the position of each particle by analyzing how 
closely particles  are  packed  in  its  neighborhood. In 
a region in which particles are packed together more 
closely, the density will be higher. This kernel has 3 
phases which are implemented in the functions Init- 
DensitiesAndForces, ComputeDensities and Compute- 
Densities2. 

Compute forces  Once the densities are known,  they can 
be used to compute the forces. This step happens in 
function ComputeForces. The kernel evaluates pres- 
sure, viscosity and also gravity as the only external 
influence. Collisions between particles are handled im- 
plicitly during this step, too. 

Handle collisions with scene geometry The next ker- 
nel updates the forces in order to handle collisions of 
particles with the scene geometry. This step is imple- 
mented in function ProcessCollisions. 

Update positions of particles Finally, the forces can be 
used to calculate the acceleration of each particle and 
update its position. fluidanimate uses a Verlet in- 
tegrator[42] for these computations which is imple- 
mented in function AdvanceParticles. 

 
The input sets for fluidanimate are sized as follows: 

• native: 500,000 particles, 500 frames 

 freqmine 
The freqmine application employs an array-based version 
of the FP-growth (Frequent Pattern-growth) method[15] for 
Frequent Itemset Mining (FIMI). It is an Intel RMS bench- 
mark which was originally developed by Concordia Univer- 
sity. FIMI is the basis of Association Rule Mining (ARM), 
a very common data mining problem which is relevant for 
areas such as protein sequences, market data or log anal- 
ysis. The serial program this benchmark is based on won 
the FIMI’03 best implementation award for its efficiency. 
freqmine was included in the PARSEC benchmark suite be- 
cause of the increasing demand for data mining techniques 
which is driven by the rapid growth of the volume of stored 
information. 

 
FP-growth stores all relevant frequency information of the 
transaction database in a compact data structure called FP- 
tree (Frequent Pattern-tree)[16].   An FP-tree is composed 
of three parts: First, a prefix tree encodes the transaction 
data such that each branch represents a frequent itemset. 
The nodes along the branches are stored in decreasing order 
of frequency of the corresponding item. The prefix tree is a 
more compact representation of the transaction database be- 
cause overlapping itemsets share prefixes of the correspond- 
ing branches. The second component of the FP-tree is a 
header table which stores the number of occurrences of each 
item in decreasing order of frequency. Each entry is also as- 
sociated with a pointer to a node of the FP-tree. All nodes 
which are associated with the same item are linked to a list. 
The list can be traversed by looking up the corresponding 
item in the header table and following the links to the end. 
Each node furthermore contains a counter that encodes how 
often the represented itemset as seen from the root to the 
current node occurs in the transaction database. The third 
component of the FP-tree is a lookup table which stores 
the frequencies of all 2-itemsets. A row in the lookup table 
gives all occurrences of items in itemsets which end with the 
associated item. This information can be used during the 
mining phase to omit certain FP-tree scans and is the ma- 
jor improvement of the implemented algorithm. The lookup 
table is especially effective if the dataset is sparse which is 
usually the case.   The FP-trees are then very big due to 
the fact that only few prefixes are shared. In that case tree 
traversals are more expensive, and the benefit from being 
able to omit them is greater. The initial FP-tree can be 
constructed with only two scans of the original database, 
the first one to construct the header table and the second 
one to compute the remaining parts of the FP-tree. 

In order to mine the data for frequent itemsets, the FP- 
growth method traverses the FP-tree data structure and re- 
cursively constructs new FP-trees until the complete set of 
frequent itemsets is generated. To construct a new FP-tree 

• simlarge: 300,000 particles, 5 frames 2r h 2h 
3 

Wviscosity (r, h) = 
2

 

   
15 
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TX∪{i} for an item i in the header of an existing FP-tree 
TX , the algorithm first obtains a new pattern base from the 
lookup table. The base is used to initialize the header of the 
new tree TX∪{i}. Starting from item i in the header table 
of the existing FP-tree TX , the algorithm then traverses the 
associated linked list of all item occurrences. The patterns 
associated with the visited branches are then inserted into 
the new FP-tree TX∪{i}. The resulting FP-tree is less bushy 
because it was constructed from fewer itemsets. The recur- 
sion terminates when an FP-tree was built which has only 
one path. The properties of the algorithm guarantee that 
this is a frequent itemset. 

 
freqmine has been parallelized with OpenMP. It employs 
three parallel kernels: 

 
Build FP-tree header This kernel scans the transaction 

database and counts the number of occurrences of each 
item. It performs the first of two database scans nec- 
essary to construct the FP-tree. The result of this 
operation is the header table for the FP-tree which 
contains the item frequency information. This kernel 
has one parallelized loop and is implemented in func- 
tion scan1 DB. 

Construct prefix tree The next kernel builds the initial 
tree structure of the FP-tree. It performs the second 
and final scan of the transaction database necessary 
to build the data structures which will be used for the 
actual mining operation. The kernel has four paral- 
lelized loops. It is implemented in function scan2 DB 
which contains two of them. The remaining two loops 
are in its helper function database tiling. 

Mine data The last kernel uses the data structures previ- 
ously computed and mines them to recursively obtain 
the frequent itemset information. It is an improved 
version of the conventional FP-growth method[16]. This 
module has similarities with the previous two kernels 
which construct the initial FP-tree because it builds a 
new FP-tree for every recursion step. 

The module is implemented in function FP growth first. 
It first derives the initial lookup table from the current 
FP-tree by calling first transform FPTree into FP- 
Array. This function executes the first of two paral- 
lelized loops. After that the second parallelized loop is 
executed in which the recursive function FP growth is 
called. It is the equivalent of FP growth first. Each 
thread calls FP growth independently so that a num- 
ber of recursions up to the number of threads can be 
active. 

 
The input sets for freqmine are defined as follows: 

 
test: Database with 3 synthetic transactions, mini- 
mum support 1. 

simdev: Database with 1,000 synthetic transactions, 
minimum support 3. 

simsmall: Database with 250,000 anonymized click 
streams from a Hungarian online news portal, mini- 
mum support 220. 

simmedium: Same as simsmall but with 500,000 click 
streams, minimum support 410. 

simlarge: Same as simsmall but with 990,000 click 
streams, minimum support 790. 

native: Database composed of spidered collection of 
250,000 web HTML documents[26], minimum support 
11,000. 

 
 streamcluster 

This RMS kernel was developed by Princeton University and 
solves the online clustering problem[34]: For a stream of 
input points, it finds a predetermined number of medians 
so that each point is assigned to its nearest center. The 
quality of the clustering is measured by the sum of squared 
distances (SSQ) metric. Stream clustering is a common op- 
eration where large amounts or continuously produced data 
has to be organized under real-time conditions, for example 
network intrusion detection, pattern recognition and data 
mining. The program spends most of its time evaluating the 
gain of opening a new center. This operation uses a paral- 
lelization scheme which employs static partitioning of data 
points. The program is memory bound for low-dimensional 
data and becomes increasingly computationally intensive as 
the dimensionality increases. Due to its online character the 
working set size of the algorithm can be chosen indepen- 
dently from the input data. streamcluster was included in 
the PARSEC benchmark suite because of the importance of 
data mining algorithms and the prevalence of problems with 
streaming characteristics. 

 
The parallel gain computation is implemented in function 
pgain. Given a preliminary solution, the function computes 
how much cost can be saved by opening a new center. For 
every new point, it weighs the cost of making it a new center 
and reassigning some of the existing points to it against the 
savings caused by minimizing the distance 

 
 

d(x, y) = |x − y|
2

 

between two points x and y for all points. The distance 
computation is implemented in function dist. If the heuris- 
tic determines that the change would be advantageous the 
results are committed. 

 
The amount of parallelism and the working set size of a 
problem are dominated by the block size. The input sets of 
swaptions are defined as follows: 

 

test: 10 input points, block size 10 points, 1 point 
dimension, 2–5 centers, up to 5 intermediate centers 
allowed 

simdev: 16 input points, block size 16 points, 3 point 
dimensions, 3–10 centers, up to 10 intermediate centers 
allowed 

simsmall: 4,096 input points, block size 4,096 points, 
32 point dimensions, 10–20 centers, up to 1,000 inter- 
mediate centers allowed 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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simmedium: 8,192 input points, block size 8,192 points, 
64 point dimensions, 10–20 centers, up to 1,000 inter- 
mediate centers allowed 

simlarge: 16,384 input points, block size 16,384 points, 
128 point dimensions, 10–20 centers, up to 1,000 inter- 
mediate centers allowed 

native: 1,000,000 input points, block size 200,000 points, 
128 point dimensions, 10–20 centers, up to 5,000 inter- 
mediate centers allowed 

 
 swaptions 

The swaptions application is an Intel RMS workload which 
uses the Heath-Jarrow-Morton (HJM) framework to price a 
portfolio of swaptions. The HJM framework describes how 
interest rates evolve for risk management and asset liability 
management[17] for a class of models. Its central insight is 

construct multi-threaded image processing pipelines trans- 
parently on the fly. Future libraries might use concepts such 
as the ones employed by VIPS to make multi-threaded func- 
tionality available to the user. 

 
The image transformation pipeline of the vips benchmark 
has 18 stages.   It is implemented in the VIPS operation 
im benchmark. The stages can be grouped into the following 
kernels: 

 

Crop The first step of the pipeline is to remove 100 pixels 
from all edges with VIPS operation im extract area. 

Shrink Next, vips shrinks the image by 10%. This affine 
transformation is implemented as the matrix operation 

that there is an explicit relationship between the drift and 
volatility parameters of the forward-rate dynamics in a no- 
arbitrage market. Because HJM models are non-Markovian 

f (→x) = 

»  
0.9 0

 

– 

→x + 

»  
0  
– 

the analytic approach of solving the PDE to price a deriva- 
tive cannot be used. Swaptions therefore employs Monte 
Carlo (MC) simulation to compute the prices. The work- 
load was included in the benchmark suite because of the 
significance of PDEs and the wide use of Monte Carlo sim- 
ulation. 

 
The program stores the portfolio in the swaptions array. 
Each entry corresponds to one derivative. Swaptions parti- 
tions the array into a number of blocks equal to the num- 
ber of threads and assigns one block to every thread. Each 
thread iterates through all swaptions in the work unit it was 
assigned and calls the function HJM Swaption Blocking for 
every entry in order to compute the price. This function in- 
vokes HJM SimPath Forward Blocking to generate a random 
HJM path for each MC run. Based on the generated path 
the value of the swaption is computed. 

 
The following input sets are provided for swaptions: 

in VIPS operation im  affine.  The transformation uses 
bilinear interpolation to compute the output values. 

Adjust white point and shadows To improve the per- 
ceived visual quality of the image under the expected 
target conditions, vips brightens the image, adjusts 
the white point and pulls the shadows down. These 
operations require several linear transformations and a 
matrix multiplication, which are implemented in im lin- 
tra, im lintra vec and im recomb. 

Sharpen The last step slightly exaggerates the edges of the 
output image in order to compensate for the blurring 
caused by printing and to give the image a better over- 
all appearance. This convolution employs a Gaussian 
blur filter with mask radius 11 and a subtraction in 
order to isolate the high-frequency signal component 
of the image. The intermediate result is transformed 
via a look-up table shaped as 

 

• test: 1 swaption, 5 simulations 
 

f (x) = 

0.5x |x| ≤ 2.5 

1.5x + 2.5  x < −2.5 

• simdev: 3 swaptions, 50 simulations 

• simsmall: 16 swaptions, 5,000 simulations 

• simmedium: 32 swaptions, 10,000 simulations 

• simlarge: 64 swaptions, 20,000 simulations 

• native: 128 swaptions, 1,000,000 simulations 

 vips 
This application is based on the VASARI Image Processing 
System (VIPS)[30] which was originally developed through 
several projects funded by European Union (EU) grants. 
The benchmark version is derived from a print on demand 
service that is offered at the National Gallery of London, 
which is also the current maintainer of the system. The 
benchmark includes fundamental image operations such as 
an affine transformation and a convolution. It was chosen 
because image transformations are a common task on desk- 
top computers and for the ability of the VASARI system to 

1.5x − 2.5  x > 2.5 

and added back to the original image to obtain the 
sharpened image. Sharpening is implemented in VIPS 
operation im sharpen. 

 

The VASARI Image Processing System fuses all image op- 
erations to construct an image transformation pipeline that 
can operate on subsets of an image. VIPS can automat- 
ically replicate the image transformation pipeline in order 
to process multiple image regions concurrently. This hap- 
pens transparently for the user of the library. Actual image 
processing and any I/O is deferred as long as possible. Inter- 
mediate results are represented in an abstract way by partial 
image descriptors. Each VIPS operation can specify a de- 
mand hint which is evaluated to determine the work unit 
size of the combined pipeline. VIPS uses memory-mapped 
I/O to load parts of an input image on demand. After the 
requested part of a file has been loaded, all image operations 

• 

• 

• 

0 
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are applied to the image region before the output region is 
written back to disk. 

 
A VIPS operation is composed of the main function which 
provides the public interface employed by the users, the 
generate function which implements the actual image op- 
eration, as well as a start and a stop function. The main 
functions register the operation with the VIPS evaluation 
system. Start functions are called by the runtime system 
to perform any per-thread initialization. They produce a 
sequence value which is passed to all generate functions and 
the stop function. Stop functions handle the shutdown at 
the end of the evaluation phase and destroy the sequence 
value. The VIPS system guarantees the mutually exclusive 
execution of start and stop functions, which can thus be 
used to communicate between threads during the pipeline 
initialization or shutdown phase. The generate functions 
transform the image and correspond to the pipeline stages. 

The sizes of the images used for the input sets for vips are: 

 
• test: 256 × 288 pixels 

• simdev: 256 × 288 pixels 

• simsmall: 1, 600 × 1, 200 pixels 

• simmedium: 2, 336 × 2, 336 pixels 

• simlarge: 2, 662 × 5, 500 pixels 

• native: 18, 000 × 18, 000 pixels 

3.2.12 x264 
The x264 application is an H.264/AVC (Advanced Video 
Coding) video encoder. In the 4th annual video codec com- 
parison[41] it was ranked 2nd best codec for its high en- 
coding quality. It is based on the ITU-T H.264 standard 
which was completed in May 2003 and which is now also 
part of ISO/IEC MPEG-4. In that context the standard is 
also known as MPEG-4 Part 10. H.264 describes the lossy 
compression of a video stream[43]. It improves over previ- 
ous video encoding standards with new features such as in- 
creased sample bit depth precision, higher-resolution color 
information, variable block-size motion compensation (VB- 
SMC) or context-adaptive binary arithmetic coding (CABAC). 
These advancements allow H.264 encoders to achieve a higher 
output quality with a lower bit-rate at the expense of a 
significantly increased encoding and decoding time. The 
flexibility of H.264 allows its use in a wide  range  of  con- 
texts with different requirements, from video conferencing 
solutions to high-definition (HD) movie distribution. Next- 
generation HD DVD or Blu-ray video players already require 
H.264/AVC encoding. The flexibility and wide range of ap- 
plication of the H.264 standard and its ubiquity in next- 
generation video systems are the reasons for the inclusion of 
x264 in the PARSEC benchmark suite. 

H.264 encoders and decoders operate on macroblocks of pix- 
els which have the fixed size of 16 16 pixels. Various tech- 
niques are used to detect and eliminate data redundancy. 
The most important one is motion compensation. It is em- 
ployed to exploit temporal redundancy between successive 
frames. Motion compensation is usually the most expensive 

operation that has to be executed to encode a frame. It 
has a very high impact on the final compression ratio. The 
compressed output frames can be encoded in one of three 
possible ways: 

 

I-Frame An I-Frame includes the entire image and does not 
depend on other frames. All its macroblocks are en- 
coded using intra prediction. In intra mode, a predic- 
tion block is formed using previously encoded blocks. 
This prediction block is subtracted from the current 
block prior to encoding. 

P-Frame These frames include only the changed parts of 
an image from the previous I- or P-frame. A P-Frame 
is encoded with intra prediction and inter prediction 
with at most one motion-compensated prediction sig- 
nal per prediction block. The prediction model is formed 
by shifting samples from previously encoded frames to 
compensate for motion such as camera pans. 

B-Frame B-Frames are constructed using data from the 
previous and next I- or P-Frame. They are encoded 
like a P-frame but using inter prediction with two 
motion-compensated prediction signals. B-Frames can 
be compressed much more than other frame types. 

 

The enhanced inter and intra prediction techniques of H.264 
are the main factors for its improved coding efficiency. The 
prediction schemes can operate on block of varying size and 

shapes which can be as small as 4 × 4 pixels. 

The parallel algorithm of x264 uses the pipeline model with 
one stage per input video frame. This results in a virtual 
pipeline with as many stages as there are input frames. x264 
processes a number of pipeline stages equal to the number 
of encoder threads in parallel, resulting in a sliding window 
which moves from the beginning of the pipeline to its end. 
For P- and B-Frames the encoder requires the image data 
and motion vectors from the relevant region of the reference 
frames in order to encode the current frame, and so each 
stage makes this information available as it is calculated 
during the encoding process. Fast upward movements can 
thus cause delays which can limit the achievable speedup of 
x264 in practice. In order to compensate for this effect, the 
parallelization model requires that x264 is executed with 
a number of threads greater than the number of cores to 
achieve maximum performance. 

 
x264 calls function x264 encoder encode to encode another 
frame. x264 encoder encode uses function x264 slicetype - 
decide to determine as which type the frame will be encoded 
and calls all necessary functions to produce the correct out- 
put. It also manages the threading functionality of x264. 
Threads use the functions x264 frame cond broadcast and 
x264 frame cond wait to inform each other of the encoding 
progress and to make sure that no data is accessed while it 
is not yet available. 

 
The videos used for the input sets have been derived from 
the uncompressed version of the short film ”Elephants Dream”[3]. 
The number of frames determines the amount of parallelism. 
The exact characteristics of the input sets are: 
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• test: 32 × 18 pixels, 1 frame 

• simdev: 64 × 36 pixels, 3 frames 

• simsmall: 640 × 360 pixels ( 
 

 
 

 
HDTV  resolution),  8 

parameters. The baseline cache configuration was a shared 4-
way associative cache with 4 MB capacity and 64 byte lines. 
By default the workloads used 8 cores. All experi- ments 
were conducted on a set of Symmetric Multiproces- 

3 

frames 

simmedium: 640 360 pixels ( 1 HDTV resolution), 32 
frames 

simlarge:  640 360 pixels ( 3 HDTV resolution), 128 
frames 

native:  1, 920 1, 080 pixels (HDTV resolution), 512 
frames 

 

4. METHODOLOGY 
In this section we explain how we characterized the PAR- 
SEC benchmark suite. We are interested in the following 
characteristics: 

 
Parallelization PARSEC benchmarks use different paral- 

lel models which have to be analyzed in order to know 
whether the programs can scale well enough for the 
analysis of CMPs of a certain size. 

Working sets and locality Knowledge of the cache re- 
quirements of a workload are necessary to identify bench- 
marks suitable for the study of CMP memory hierar- 
chies. 

Communication to computation ratio and sharing The 
communication patterns of a program determine the 
potential impact of private caches and the on-chip net- 
work on performance. 

Off-chip traffic The off-chip traffic requirements of a pro- 
gram are important to understand how off-chip band- 
width limitations of a CMP can affect performance. 

 
In order to characterize all applications, we had to make 
several trade-off decisions. Given a limited amount of com- 
putational resources, higher accuracy comes at the expense 
of a lower number of experiments. We followed the approach 
of similar studies[44, 22] and chose faster but less accu- 
rate execution-driven simulation to characterize the PAR- 
SEC workloads. This approach is feasible because we limit 
ourselves to study fundamental program properties which 
should have a high degree of independence from architec- 
tural details. Where possible we supply measurement results 
from real machines. This methodology made it possible to 
gather the large amount of data which we present in this 
study. We preferred machine models comparable to real 
processors over unrealistic models which might have been a 
better match for the program needs. 

 Experimental Setup 
We used CMP$im[22] for our workload characterization. 
CMP$im is a plug-in for Pin[2] that simulates the cache hi- 
erarchy of a CMP. Pin is similar to the ATOM toolkit for 
Compaq’s Tru64 Unix on Alpha processors. It uses dynamic 
binary instrumentation to insert routines at arbitrary points 
in the instruction stream. For the characterization we sim- 
ulate a single-level cache hierarchy of a CMP and vary its 

sor (SMP) machines with x86 processors and Linux. The 
programs were compiled with gcc 4.2.1. 

 
Because of the large computational cost we could not per- 
form simulations with the native input set, instead we used 
the simlarge inputs for all simulations and analytically de- 
scribe any differences between the two sets of which we 
know. 

 Methodological Limitations and Error Mar- 

gins 
For their characterization of the SPLASH-2 benchmark suite, 
Woo et al. fixed a timing model which they used for all ex- 
periments[44]. They give two reasons: First, nondetermin- 
istic programs would otherwise be difficult to compare be- 
cause different execution paths could be taken, and second, 
the characteristics they study are largely independent from 
an architecture. They also state that they believe that the 
timing model should have only a small impact on the results. 
While we use similar characteristics and share this belief, we 
think a characterization study of multi-threaded programs 
should nevertheless analyze the impact of nondeterminism 
on the reported data. Furthermore, because our methodol- 
ogy is based on execution on real machines combined with 
dynamic binary instrumentation, it can introduce additional 
latencies, and a potential concern is that the nondetermin- 
istic thread schedule is altered in a way that might affect 
our results in unpredictable ways. We therefore conducted 
a sensitivity analysis to quantify the impact of nondetermin- 
ism. 

 
Alameldeen and Wood studied the variability of nondeter- 
ministic programs in more detail and showed that even small 
pseudo-random perturbations of memory latencies are ef- 
fective to force alternate execution paths[5]. We adopted 
their approach and modified CMP$im to add extra delays 
to its analysis functions. Because running all experiments 
multiple times as Alameldeen and Wood did would be pro- 
hibitively expensive, we instead decided to randomly select 
a subset of all experiments for each metric which we use and 
report its error margins. 

The measured quantities deviated by no more than 0.04% 
from the average, with the following two exceptions. The 
first excpetion is metrics of data sharing. In two cases 
(bodytrack and swaptions) the classification is noticeably 
affected by the nondeterminism of the program. This is par- 
tially caused because shared and thread-private data con- 
tend aggressively for a limited amount of cache capacity. 
The high frequency of evictions made it difficult to classify 
lines and accesses as shared or private. In these cases, the 
maximum deviation of the number of accesses from the av- 
erage was as high as 4.71%, and the amount of sharing 
deviated by as much as 15.22%. We considered this un- 
certainty in our study and did not draw any conclusions 
where the variation of the measurements did not allow it. 
The second case of high variability is when the value of the 
measured quantity is very low (below 0.1% miss rate or cor- 
responding ratio). In these cases the nondeterministic noise 

1 
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Figure 1: Upper bound for speedup of PARSEC 
workloads with input set simlarge based on instruc- 
tion count. Limitations are caused by serial sec- 
tions, growing parallelization overhead and redun- 
dant computations. 

 

made measurements difficult. We do not consider this a 
problem because in this study we focus on trends of ratios, 
and quantities that small do not have a noticeable impact. 
It is however an issue for the analysis of working sets if the 
miss rate falls below this threshold and continues to decrease 
slowly. Only few programs are affected, and our estimate of 
their working set sizes might be slightly off in these cases. 
This is primarily an issue inherent to experimental working 
set analysis, since it requires well-defined points of inflection 
for conclusive results. Moreover, we believe that in these 
cases the working set size varies nondeterministically, and 
researchers should expect slight variations for each bench- 
mark run. 

The implications of these results are twofold: First, they 
show that our methodology is not susceptible to the non- 
deterministic effects of multi-threaded programs in a way 
that might invalidate our findings. Second, they also con- 
firm that the metrics which we present in this paper are 
fundamental program properties which cannot be distorted 
easily. The reported application characteristics are likely to 
be preserved on a large range of architectures. 

 

5. PARALLELIZATION 
In this section we discuss the parallelization of the PAR- 
SEC suite. As we will see in Section 6, several PARSEC 
benchmarks (canneal, dedup, ferret and freqmine) have 
working sets so large they should be considered unbounded 
for an analysis. These working sets are only limited by the 
amount of main memory in practice and they are actively 
used for inter-thread communication. The inability to use 
caches efficiently is a fundamental property of these pro- 
gram and affects their concurrent behavior. Furthermore, 
dedup and ferret use a complex, heterogeneous paralleliza- 
tion model in which specialized threads execute different 
functions with different characteristics at the same time. 
These programs employ a pipeline with dedicated thread 
pools for each parallelized pipeline stage. Each thread pool 

Figure 2: Parallelization overhead of PARSEC 
benchmarks. The chart shows the slowdown of the 
parallel version on 1 core over the serial version. 

 

 
has enough threads to occupy the whole CMP, and it is 
the responsibility of the scheduler to assign cores to threads 
in a manner that maximizes the overall throughput of the 
pipeline. Over time, the number of threads active for each 
stage will converge against the inverse throughput ratios of 
the individual pipeline stages relative to each other. 

 

Woo et al. use an abstract machine model with a uniform 
instruction latency of one cycle to measure the speedups of 
the SPLASH-2 programs[44].   They justify their approach 
by pointing out that the impact of the timing model on the 
characteristics which they measure - including speedup - is 
likely to be low. Unfortunately, this is not true in general for 
PARSEC workloads. While we have verified in Section 4.2 
that the fundamental program properties such as miss rate 
and instruction count are largely not susceptible to timing 
shocks, the synchronization and timing behavior of the pro- 
grams is. Using a timing model with perfect caches sig- 
nificantly alters the behavior of programs with unbounded 
working sets, for example how long locks to large, shared 
data structures are held. Moreover, any changes of the tim- 
ing model have a strong impact on the number of active 
threads of programs which employ thread specialization. It 
will thus affect the load balance and synchronization be- 
havior of these workloads. We believe it is not possible to 
discuss the timing behavior of these programs without also 
considering for example different schedulers, which is beyond 
the scope of this paper. Similar dependencies of commercial 
workloads on their environment are already known[9, 4]. 

Unlike Woo et al. who measured actual concurrency on an 
abstract machine, we therefore decided to analyze inherent 
concurrency and its limitations. Our approach is based on 
the number of executed instructions in parallel and serial re- 
gions of the code. We neglect any delays due to blocking on 
contended locks and load imbalance. This methodology is 
feasible because we do not study performance, our interest 
is in fundamental program characteristics. The presented 
data is largely timing-independent and a suitable measure 
of the concurrency inherent in a workload. The results in 
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Figure 1 show the maximum achievable speedup measured 
that way. The numbers account for limitations such as un- 
parallelized code sections, synchronization overhead and re- 
dundant computations. PARSEC workloads can achieve ac- 
tual speedups close to the presented numbers. We verified 
on a large range of architectures that lock contention and 
other timing-dependent factors are not limiting factors, but 
we know of no way to show it in a platform-independent 
way given the complications outlined above. The maximum 
speedup of bodytrack,  x264  and  streamcluster  is  limited 
by serial sections of the code. fluidanimate is primarily 
limited by growing parallelization overhead. On real ma- 
chines, x264 is furthermore bound by a data dependency 
between threads, however this has only a noticeable impact 
on machines larger than the ones described here. It is rec- 
ommended to run x264 with more threads than cores, since 
modeling and exposing these dependencies to the scheduler 
is a fundamental aspect of its parallel algorithm, compara- 
ble to the parallel algorithms of dedup and ferret. Figure 2 
shows the slowdown of the parallel version on 1 core over the 
serial version. The numbers show that all workloads use ef- 
ficient parallel algorithms which are not substantially slower 
than the corresponding serial algorithms. 

 
PARSEC programs scale well enough to study CMPs. We 
believe they are also useful on machines larger than the 
ones analyzed here. The PARSEC suite exhibits a wider 
variety of parallelization models than previous benchmark 
suites such as the pipeline model. Some of its workloads 
can adapt to different timing models and can use threads to 
hide latencies. It is important to analyze these programs in 
the context of the whole system. 

 

6. WORKING SETS AND LOCALITY 
The temporal locality of a program can be estimated by 
analyzing how the miss rate of a processor’s cache changes as 
its capacity is varied. Often the miss rate does not decrease 
continuously as the size of a cache is increased, but stays on 
a certain level and then makes a sudden jump to a lower level 
when the capacity becomes large enough to hold the next 
important data structure. For CMPs an efficient functioning 
of the last cache level on the chip is crucial because a miss 
in the last level will require an access to off-chip memory. 

To analyze the working sets of the PARSEC workloads we 
studied a cache shared by all processors. Our results are pre- 
sented in Figure 3. In Table 3 we summarize the important 
characteristics of the identified working sets. Most work- 
loads exhibit well-defined working sets with clearly identifi- 
able points of inflection. Compared to SPLASH-2, PARSEC 
working sets are significantly larger and can reach hundreds 
of megabytes such as in the cases of canneal and freqmine. 

 
Two types of workloads can be distinguished: The first 
group contains benchmarks such as bodytrack and swaptions 
which have working sets no larger than 16 MB. These work- 
loads have a limited need for caches with a bigger capac- 
ity, and the latest generation of CMPs often already has 
caches sufficiently large to accommodate most of their work- 
ing sets. The second group of workloads is composed of the 
benchmarks canneal, ferret, facesim, fluidanimate and 
freqmine. These programs  have  very  large  working  sets 
of sizes 65 MB and more, and even with a relatively con- 

strained input set such as simlarge, their working sets can 
reach hundreds of megabytes. Moreover, the need of those 
workloads for cache capacity is nearly insatiable and grows 
with the amount of data which they process. In Table 3 we 
give our estimates for the largest working set of each PAR- 
SEC workload for the native input set. In  several  cases 
they are significantly larger and can even reach gigabytes. 
These large working sets are often the consequence of an 
algorithm that operates on large amounts of collected in- 
put data. ferret for example keeps a data base of feature 
vectors of images in memory to find the images most sim- 
ilar to a given query image.  The cache and memory needs 
of these applications should be considered unbounded, as 
they become more useful to their users if they can work 
with increased amounts of data. Programs with unbounded 
working sets are canneal, dedup, ferret and freqmine. 

 
In Figure 4 we present our analysis of the spatial local- 
ity of the PARSEC workloads. The data shows  how  the 
miss rate of a shared cache changes with line size. All pro- 
grams benefit from larger cache lines, but to different ex- 
tents. facesim, fluidanimate and streamcluster show the 
greatest improvement as the line size is increased, up to the 
the maximum value of 256 bytes which we used. These pro- 
grams have streaming behavior, and an increased line size 
has a prefetching effect which these workloads can take 
ad- vantage of. facesim for example spends most of its time 
updating the position-based state of the model, for which it 
employs an iterative Newton-Raphson algorithm. The algo- 
rithm iterates over the elements of a sparse matrix which is 
stored in two one-dimensional arrays, resulting in a stream- 
ing behavior. All other programs also show good improve- 
ment of the miss rate with larger cache lines, but only up 
to line sizes of about 128 bytes. The miss rate is not sub- 
stantially reduced with larger lines. This is due to a limited 
size of the basic data structures employed by the programs. 
They represent independent logical units, each of which is 
intensely worked with during a computational phase. For 
example, x264 operates on macroblocks of 8    8 pixels at 
a time, which limits the sizes of the used data structures. 
Processing a macroblock is computationally intensive and 
largely independent from other macroblocks. Consequently, 
the amount of spatial locality is bounded in these cases. 

For the rest of our analysis we chose a cache capacity of 4 
MB for all experiments. We could have used a matching 
cache size for each workload, but that would have made 
comparisons very difficult, and the use of very small or very 
large cache sizes is not realistic. Moreover, in the case of the 
workloads with an unbounded working set size, a working 
set which completely fits into a cache would be an artifact 
of the limited simulation input size and would not reflect 
realistic program behavior. 

7. COMMUNICATION-TO-COMPUTATION 

RATIO AND SHARING 
In this section we discuss how PARSEC workloads use caches 
to communicate. Most PARSEC benchmarks share data 
intensely. Two degrees of sharing can be distinguished: 
Shared data can be read-only during the parallel phase, in 
which case it is only used for lookups and analysis. Input 
data is frequently used in such a way. But shared data can 
also be used for communication between threads, in which 
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Figure 3: Miss rates versus cache size. Data assumes a shared 4-way associative cache with 64 byte lines. WS1 
and WS2 refer to important working sets which we analyze in more detail in Table 3. Cache requirements of 
PARSEC benchmark programs can reach hundreds of megabytes. 

 
 

Program 
Input Set 
simlarge 

Input Set 
native 

Working Set 2 
Size 

Estimate 

Working Set 1 Working Set 2 
Data 

Structure(s) 
Size Growth 

Rate 
Data 

Structure(s) 
Size Growth 

Rate 
blackscholes options 64 KB C portfolio data 2 MB C same 
bodytrack edge maps 512 KB const. input frames 8 MB const. same 
canneal elements 64 KB C netlist 256 MB DS 2 GB 
dedup data chunks 2 MB C hash table 256 MB DS 2 GB 
facesim tetrahedra 256 KB C face mesh 256 MB DS same 
ferret images 128 KB C data base 64 MB DS 128 MB 
fluidanimate cells 128 KB C particle data 64 MB DS 128 MB 
freqmine transactions 256 KB C FP-tree 128 MB DS 1 GB 
streamcluster data points 64 KB C data block 16 MB user-def. 256 MB 
swaptions swaptions 512 KB C same as WS1 same same same 
vips image data 64 KB C image data 16 MB C same 
x264 macroblocks 128 KB C reference frames 16 MB C same 

 

Table 3: Important working sets and their growth rates. DS represents the data set size and C is the number 
of cores. Working set sizes are taken from Figure 3. Values for native input set are analytically derived 
estimates. Working sets that grow proportional to the number of cores C are aggregated private working 
sets and can be split up to fit into correspondingly smaller, private caches. 
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Figure 4: Miss rates as a function of line size. Data assumes 8 cores sharing a 4-way associative cache with 
4 MB capacity. Miss rates are broken down to show the effect of loads and stores. 
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Figure 5: Portion of a 4-way associative cache with 4 MB capacity which is shared. The line size is varied 
from 8 to 256 bytes.  Data assumes 8 cores and is broken down to show the number of threads sharing the 
lines. 

 

case it is also modified during the parallel phase. In Figure 5 
we show how the line size affects sharing. The data com- 
bines the effects of false sharing and the access pattern of 
the program due to constrained cache capacity. In Figure 6, 
we analyze how the program uses its data. The chart shows 
what data is accessed and how intensely it is used. The in- 
formation is broken down in two orthogonal ways, resulting 
in four possible types of accesses: Read and write accesses 
and accesses to thread-private and shared data. Addition- 
ally, we give numbers for true shared accesses. An access is 
a true access if the last reference to that line came from an- 
other thread. True sharing does not count repeated accesses 
by the same thread. It is a useful metric to estimate the re- 
quirements for the cache coherence mechanism of a CMP: A 
true shared write can trigger a coherence invalidate or up- 
date, and a true shared read might require the replication 
of data. All programs exhibit very few true shared writes. 
Cache misses are not included in Figure 6, we analyze them 

separately when we discuss off-chip traffic in Section 8. 
 

Four programs (canneal, facesim, fluidanimate and stream- 
cluster) showed only trivial amounts of sharing. They have 
therefore  not  been  included  in  Figure  5.    In the case of 
canneal, this is a results of the small cache capacity. Most 
of its large working set is shared and actively worked with 
by all threads. However, only a minuscule fraction of it fits 
into the cache, and the probability that a line is accessed by 
more than one thread before it gets replaced is very small 
in practice. With a 256 MB cache, 58% of its cached data is 
shared. blackscholes shows a substantial amount of shar- 
ing, but almost all its shared data is only accessed by two 
threads. This is a side-effect of the parallelization model: At 
the beginning of the program, the boss threads initializes the 
portfolio data before it spawns worker threads which process 
parts of it in a data-parallel way. As such, the entire port- 
folio is shared between the boss thread and its workers, but 
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Figure 6: Traffic from cache in bytes per instruction for 1 to 16 cores. Data assumes a shared 4-way associative 
cache with 64 byte lines. Results are broken down in accesses to private and shared data. True accesses do 
not count repeated accesses from the same thread. 

 

the worker threads can process the options independently 
from each other and do not have to communicate with each 
other. ferret shows a modest amount of data sharing. Like 
the sharing behavior of canneal, this is caused by severely 
constrained cache capacity. ferret uses a database that is 
scanned by all threads to find entries similar to the query 
image. However, the size of the database is practically un- 
bounded, and because threads do not coordinate their scans 
with each other it is unlikely that a cache line gets accessed 
more than once. bodytrack and freqmine exhibit substan- 
tial amounts of sharing due to the fact that threads process 
the same data. The strong increase of sharing of freqmine 
is caused by false sharing, as the program uses an array- 
based tree as its main data structure. Larger cache lines 
will contain more nodes, increasing the chance that the line 
is accessed by multiple threads. vips has some shared data 
which is mostly used by only two threads. This is also pre- 
dominantly an effect of false sharing since image data is 
stored in a consecutive array which is processed in a data- 
parallel way by threads. x264 uses significant amounts of 
shared data, most of which is only accessed by a low num- 
ber of threads. This data is the reference frames, since a 
thread needs this information from other stages in order 
to encode the frame it was assigned. Similarly, the large 
amount of shared data of dedup is the input which is passed 
from stage to stage. 

 
Most PARSEC workloads use a significant amount of com- 
munication, and in many cases the volume of traffic between 
threads can be so high that efficient data exchange via a 
shared cache is severely constrained by its capacity. An ex- 
ample for this is x264. Figure 6 shows a large amount of 
writes to shared data, but contrary to intuition its share di- 
minishes rapidly as the number of cores is increased. This 
effect is caused by a growth of the working sets of x264: 
Table3 shows that both working set WS1 and WS2 grow pro- 
portional to the number of cores. WS1 is mostly composed 
of thread-private data and is the one which is used more 
intensely. WS2 contains the reference frames and is used 

for inter-thread communication. As WS1 grows, it starts to 
displace WS2, and the threads are forced to communicate 
via main memory. Two more programs which communicate 
intensely are dedup and ferret. Both programs use the 
pipeline parallelization model with dedicated thread pools 
for each parallel stage, and all data has to be passed from 
stage to stage. fluidanimate also shows a large amount of 
inter-thread communication, and its communication needs 
grow as the number of threads increase. This is caused by 
the spatial partitioning that fluidanimate uses to distribute 
the work to threads. Smaller partitions mean a worse sur- 
face to volume ratio, and communication grows with the 
surface. 

 
Overall, most PARSEC workloads have complex sharing 
patterns and communicate actively. Pipelined programs can 
require a large amount of bandwidth between cores in order 
to communicate efficiently. Shared caches with insufficient 
capacity can limit the communication efficiency of work- 
loads, since shared data structures might get displaced to 
memory. 

 
8. OFF-CHIP TRAFFIC 
In this section we analyze what the off-chip bandwidth re- 
quirements of PARSEC workloads are. Our goal is to under- 
stand how the traffic of an application grows as the number 
of cores of a CMP increases and how the memory wall will 
limit performance. We again simulated a shared cache and 
analyze how traffic develops as the number of cores increases. 
Our results are presented in Figure 7. 

 
The data shows that the off-chip bandwidth requirements of 
blackscholes are small enough so that memory bandwidth 
is unlikely to be an issue. bodytrack, dedup, fluidanimate, 
freqmine, swaptions and x264 are more demanding. More- 
over, these programs exhibit a growing bandwidth demand 
per instruction as the number of cores increases. In the 
case of bodytrack, most off-chip traffic happens in short, in- 
tense bursts since the off-chip communication predominantly 
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Figure 7:  Breakdown of off-chip traffic into bytes for loads, stores and write-backs per instructions.  Results 
are shown for 1 to 16 cores. Data assumes a 4-way associative 4 MB cache with 64 byte lines, allocate-on-store 
and write-back policy. 
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takes place during the edge map computation.  This phase is only a small part of the serial runtime, but on machines with constrained 
memory bandwidth it quickly becomes the limiting factor for scalability. The last group of programs is composed of canneal, facesim,  
ferret,  streamcluster and vips. These programs have very high bandwidth re- quirements and also large working sets. canneal shows a 
decreasing demand for data per instruction with more cores. This behavior is caused by improved data sharing. 

 
It is important to point out that  these  numbers  do  not take the increasing instruction throughput of a CMP into account as its number of 
cores grows. A constant traffic amount in Figure 7 means that the bandwidth requirements of an application which scales linearly will grow 
exponen- tially. Since many PARSEC workloads have high  band- width requirements and working sets which exceed conven- tional caches 
by far, off-chip bandwidth will be their most severe limitation of performance. Substantial architectural improvements are necessary to 
allow emerging workloads to take full advantage of larger CMPs. 

 
9. CONCLUSIONS 
The PARSEC benchmark suite is designed to provide par- allel programs for the study for CMPs. It focuses on emerg- ing desktop and 
server applications and does not have the limitations of other benchmark suites. It is diverse enough to be considered representative, it is 
not skewed towards HPC programs, it uses state-of-art algorithms and it sup- ports research. In this study we characterized the PARSEC 
workloads to provide the basic understanding necessary to allow other researchers the effective use of PARSEC for their studies. We 
analyzed the parallelization, the working sets and locality, the communication-to-computation ratio and the off-chip traffic of its 
workloads. The high cost of mi- croarchitectural simulation forced us to use smaller machine and problem sizes than we would really like to 
evaluate. 

Our analysis shows that current CMPs are not sufficientlyprepared for the demands of future applications. Many ar- chitectural 
problems still have to be solved to create micro- processors which are ready for the next generation of work- loads. Large working sets and 
high off-chip bandwidth de- mands might limit the scalability of future programs. PAR- SEC can be used to drive research efforts by 
application demands. 
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