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ABSTRACT 

    

Caches were created to lessen the significant difference in 

performance between the processor and memory. To further 

enhance performance, a variety of last-level cache (LLC) 

management approaches have been developed. A first finding is 

that non-inclusive caches have been used to create and test the 

majority of strategies in the literature. Another finding is that a lot 

of contemporary processors have either inclusive or exclusive 

practises in their LLCs. Due to their greater effective capacity, 

exclusive caches are becoming more and more popular as the 

number of cores rises. Thus, unique multi-core caches are 

anticipated in the future. These two observations highlight a 

discrepancy between the evaluation's cache inclusion policy 

assumptions and the reality of current and possibly future 

processor implementations. The effectiveness of current cache 

management techniques for a variety of inclusivity options is 

quantified in this paper, and it also discusses the question of how 

sensitive they are to inclusion policies. Finally, a concept LLC 

design is suggested that includes the features that are most 

appropriate for exclusive caches. The findings demonstrate that 

due to their close interaction, modern prefetchers are essential for 

evaluating replacement strategies, and inclusive caches necessitate 

a less aggressive prefetching strategy to prevent excessive back-

invalidation. The findings also identify the characteristics needed 

for an exclusive cache's replenishment policy. LLCs must receive 

reuse data from lower cache levels along with the data block 

because they lack recency information and it is difficult to 

determine the memory access that allocated the data. Moreover, 

the proposed LLC features include keeping global reuse 

information structures detached from data blocks to prevent losing 

that information when the data is evicted on hit. 

 

CCS CONCEPTS 

Computer systems organization → Parallel architectures; 

 
KEYWORDS 

Inclusion policies, cache hierarchy, cache management, cache re- 

placement policies, hardware prefetching 

 

 

INTRODUCTION 

Main memory technology has not kept pace with the rapid im- 

provement of CMOS-based processors, giving rise to the so-called 

Memory Wall [38]. Modern multi-core processors rely on large on-

chip caches to mitigate the disparity in access latency to main 

memory. The last-level cache (LLC), i.e., the level closer to memory 

and further away from cores, is typically shared among all cores 

in the chip. When shared, it stores blocks from all cores and is 

typically sized at about 1-2 megabytes (MB) per core. Increasing 

the number of cores requires a larger cache to maintain high core 

performance. 

Efficient LLCs should keep data that is being used and going 

to be used soon. Many cache management techniques have been 

investigated to bring the data before its use (prefetching) and to 

keep only the useful data (replacement policies). 

There are several ways to manage how data is allocated in the 

multiple levels of cache depending on whether a lower level (closer 

to memory) includes data resident in higher levels (closer to cores). 

In inclusive caches, a data block present in a cache must also be 

present in all of its corresponding lower levels. The result of this 

policy is a lower effective cache capacity due to the data replica- 

tion across cache levels, and the potential performance and energy 

impact of inclusiveness-induced invalidations. 

Non-inclusive caches attempt to reduce the limitations of inclu- 

sive accesses by not enforcing inclusivity in higher cache levels. 

When a data block is accessed, it is still allocated in all cache levels. 

However, an eviction on a cache does not trigger back invalida- 

tions to higher levels. There is still data replication, but there are 

not inclusiveness-induced invalidations affecting performance and 

energy. 

Exclusive caches go one step further by enforcing that a data 

block present in a cache cannot be also present in the corresponding 

higher-level cache. Only data evicted from higher levels is present 

in the exclusive cache, effectively making the last-level cache into 

a victim cache [23]. Thus, there is no data replication and there 

cannot be inclusiveness-induced invalidations. 

 Industry 

Modern processors use different types of inclusion policies in each 

cache level. The most common is to either use an inclusive or an 
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exclusive policy in the LLC and an inclusive or non-inclusive in the 

lower levels. Below are a few examples of real processors with the 

information on the inclusion policy they use. None of which has a 

non-inclusive LLC. 

AMD processors generally use exclusive LLCs and Intel proces- 

sors, inclusive. The AMD Athlon (Thurderbird architecture) had 

an exclusive L2 (LLC), while its rival at the time, the Pentium 4 

(from Willamette) [14] had inclusive L2 (LLC). Currently, the latest 

AMD Zen architecture has a (mostly) exclusive L3. Current Intel 

processors like Sandy Bridge, Ivy Bridge and Skylake have an in- 

clusive L3 and a non-inclusive L2 [15]. The Intel Knights Landing 

has an L2 (LLC) that is inclusive of the L1D and non-inclusive of 

L1I [16]. However, Intel recently announced the Skylake-X which 

has a mostly exclusive LLC (which they call non-inclusive) [1]. 

The ARM Cortex-A9 can have an (optional) L2 cache (LLC). The 

core has support to be attached to exclusive L2 caches as long as that 

is properly configured both in the core and L2 controller sides [2]. 

The processors in the IBM POWER series had mostly L3 (LLC) 

exclusive caches. The POWER5 has an L3 exclusive and an L2 

inclusive of both L1D and L1I [11]. The POWER6 has an L3 exclusive 

cache and the POWER7 has an L3 mostly exclusive cache [13]. The 

IBM zEC12 has an inclusive L3 (on die) and an inclusive L4 (off-die, 

on-package) [12]. 

 Motivation 

Research in replacement policies (RPs) has been focused on non- 

inclusive and inclusive caches. Table 1 shows a list of relevant RPs 

and the evaluated inclusion policy. There has been a lower effort in 

exclusive caches. 

 
 Inclusive Non-Incl. Exclusive 

RRIP [21] X   

SDBP [25]  X  

SHiP [36]  X  

GIPPR [22]  X  

MDPP [33]  X  

EAF [28]  X  

Perceptron [34]  X  

KPCR [26]  X  

Hawkeye [18]  X  

Bypass and Insertion [10]   X 

CHAR [5] X  X 

ExDRRIP [20]   X 

Table 1: State-of-the-art RPs and their inclusion policy. 

 

 
The number of cores in multicore chips has been increasing in 

recent years. A rule of thumb for the size of the LLC is 1-2MB 

per core. High performance cores typically include 256-512KB of 

private cache. With an inclusive cache, that could be a large amount 

of capacity wasted on maintaining inclusivity in the LLC. Exclusive 

caches are a promising option to increase the effective capacity 

without increasing chip area. 

Most RPs in the literature have been designed and evaluated in 

inclusive and non-inclusive caches. However, that does not mean 

that they would also work well on exclusive caches since they have 

different properties. For example, in an exclusive LLC, a block is 

evicted on hit while many RPs are based on the reuse of a block. 

Inclusive policies in RP design are often overlooked or not even 

mentioned. The motivation of this paper is to determine whether 

there is a need for designing different cache management tech- 

niques depending on the inclusion policy, with a focus on the exclu- 

sive caches. For this, we investigate how the existing RPs perform 

in different inclusion policies. 

 Contributions 

The contributions of this paper are: 

A comprehensive evaluation of multiple cache configura- 

tions including multiple RPs and prefetchers (PFs) for all 

three inclusion policies: inclusive, non-inclusive and exclu- 

sive caches. 

A discussion on the results targeting to understand the gaps 

in the design of cache management to improve performance 

in the presence of a given inclusion policy. 

2 BACKGROUND 

One solution to mitigate the processor and memory performance 

gap was introducing several levels of cache into the memory hi- 

erarchy to bring data closer to the processor. To make them more 

efficient, there has been extensive research on improving memory 

management, mostly PFs and RPs. 

 Prefetchers 

Prefetching is a technique used to hide memory latency by bringing 

data that will potentially be needed by the processor to a closer level 

of the memory hierarchy. There is, however, the risk of polluting 

the cache. The PF needs to be accurate (bring the data that is going 

to be requested) and timely (the prefetched data arrived to the 

cache made the accesses hit). We describe below the PFs used in 

our experiments. 

Stride-based. Code and data structures (e.g. arrays, matrices), are 

stored sequentially in memory and accessed consecutively. These 

PFs exploit this spatial locality by prefetching: the next block (stride 

of 1) like the Next-line [31]; the block plus an offset (stride of "offset" 

for timeliness) like the Instruction pointer-based stride [3]; the block 

plus a dynamic offset (dynamic stride) like Best Offset [27]. 

DRAM-Aware Access Map Pattern Matching. Ishii et al [17] pro- 

posed a PF to exploit locality in DRAM called DRAM-aware access 

map pattern matching (DAAMPM). Before the time the prefetch 

is going to be used, they suggest waiting and reordering prefetch 

requests to optimize row activation. The prefetches are reordered 

so that all blocks that need to access the same row are done together. 

They also claim that many RPs are unaware about which blocks 

were from a prefetch or by demand. They added a prefetch bit to 

avoid promoting a prefetch hit. 

Kill the Program Counter. There has been little work on studying 

the interaction between cache RPs and PFs, and their effect in each 

of the cache levels [17, 29, 37]. Those studies show that the benefit 

of RPs can be small or negative when combined with a PF. Kim et 

al. proposed a holistic approach to speculatively manage all cache 

• 

• 
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levels with coordinated PF and RP [26] called kill the program 

counter (KPC). This approach aims to improve performance and 

reduce the overall hardware budget necessary for both PF and RP. 

The PF component (KPCP), is a PF that decides in which level of 

the hierarchy to prefetch each specific block. They use a signature 

table to store a compressed history of past L1 misses. The history 

is used as a signature to index a pattern table to predict the next 

block. The predicted block plus the previous history generates 

another signature which is again used. This technique has an initial 

training phase that sets a confidence value that is increased as 

PFs are useful. Later, PFs are only triggered if confidence on the 

prediction is high. The RP component (KPCR), is a low-overhead RP 

that uses two global hysteresis to predict dead blocks by tracking 

global reuse behavior. One hysteresis is for demands and, the other, 

for prefetches. 

 Replacement Policies 

RPs improve the management of cache contents to evict first the 

blocks that are not likely to be used again. RPs are used at allocation 

time when a cache set is full: the algorithm chooses which block 

to evict from the cache to place the new one. They could also hurt 

performance if they mispredict. 

Bélády proposed an optimal cache replacement algorithm as- 

suming knowledge on the future [4]. As a processor does not have 

such knowledge, there has been plenty of work in cache replace- 

ment algorithms. We explain below a few, focusing on the ones we 

experimented with. 

Aging-based. Many RPs are based on the block’s reuse, by aging 

the blocks over time and evicting the older ones [21, 22, 30, 33, 34]. 

Jaleel et al. proposed an exclusive version of RRIP where they keep 

a bit in L2 to know if the block came from LLC (previous hit) or 

from memory [20]. 

Signature-based. Other RPs make use of the program counter as 

a signature to predict dead blocks [25, 36]. 

Evicted Address Filter. Seshadri et al. proposed evicted address 

filter (EAF) claiming to address previous efforts deficiencies in 

preventing both cache pollution and thrashing at the same time [28]. 

Bypass and Insertion Policies for Exclusive caches. Gaur et al. pro- 

posed to use the number of trips to LLC (LLC hits) and their use 

count in the L2 (L2 hits) cache [10]. Blocks with either a high use 

or trip count will usually be predicted alive. They later extended 

this work to also accommodate inclusive caches by using the same 

prediction to hint the LLC with a dead block prediction [5]. When 

the use or trip count number is low the LLC will mark the block 

as the next victim. The same hint could be used to bypass in both 

cases. 

 Inclusion Policies 

A cache level is related to the previous/higher level (if it exists) 

depending on which data blocks each level contains. A particular 

cache level can contain exactly all, exactly none or some of the 

data blocks of the higher level. An inclusive cache contains all data 

blocks of the higher level. An exclusive cache does not contain any 

of the data blocks of the higher level. A non-inclusive cache can 

contain some blocks from the higher level but not necessarily all or 

none. Inclusion policy trades off ease of implementation of cache 

coherence with capacity. The choice of inclusion policy for a cache 

hierarchy is a design decision with many inputs beyond the scope 

of this work, however as we demonstrate this choice has a large 

impact on the effectiveness of cache management techniques. 

 Inclusive. An inclusive cache level contains all data blocks 

from higher levels plus some other blocks. That is, a data 

block is replicated in both cache levels. 

In a 2-level cache hierarchy, the data block will be placed in 

both cache levels on an L2 miss. If the block is evicted from the L1 

and, later, a request comes (L1 miss), the data may still be in the 

L2, thus avoiding accessing main memory. On an L1 eviction, only 

write backs of dirty blocks are required. If the block is clean, there 

is no need to copy it back to the L2 because it is already there as 

per the inclusion policy. A potential problem is on an L2 eviction: 

to preserve inclusivity, if the block was present in L1, it must be 

evicted too. 

In a multi-core system, an inclusive policy simplifies the coher- 

ence protocol implementation. A cache wanting to invalidate copies 

of a block in other caches has to notify the LLC because it has the 

information of all blocks in all higher level caches. Therefore, it 

avoids coherence message broadcasts, thus reducing complexity 

and energy consumption. Also, coherence information (state and 

caches having a copy) can be encoded with the cache block so the 

information is available when accessing it, thus cutting latency of 

potentially having to access separate structures, such as a directory. 

One disadvantage is the effective cache size due to data dupli- 

cation. The effective size of the cache hierarchy is the size of the 

LLC. For example, in a 2-level cache hierarchy, the effective size is 

the one from L2 because it contains all contents from L1. The L1 

cache only keeps data closer but does not contribute with additional 

capacity. 

Another disadvantage is back invalidations. An eviction from 

the LLC can generate an invalidation in L1 but, if it was present 

in L1, the block may be in use. This can be a problem if the RP is 

not aware of the usage of a block in the higher caches. Jaleel et 

al. confirmed the limited performance of an inclusive cache comes 

from back invalidations because the LLC RP is unaware of the core 

presence and recency [19]. 

A related problem is that an inclusive cache has less flexibility to 

improve cache management due to the impossibility of bypassing 

the LLC to maintain inclusivity. 

 Non-Inclusive. A non-inclusive cache level may or may not 

contain blocks from higher levels. The data is replicated when 

there is a miss in a cache level, and the block is allocated in that 

cache level and all higher ones. For example, in an L1 miss where 

the block is in none of the caches, the block will be allocated in L2 

and L1. The difference with an inclusive cache is that the inclusivity 

is not enforced. That means, when a block is evicted from a lower 

level, it does not generate back invalidations to the higher levels. 

This simplifies the implementation of this type of caches. 

The effective cache size is between the size of L2 and the sum 

of both. The cache hierarchy usage in a case with non-inclusive 

cache changes depending on the application and RP. Conflict misses 

will be reduced in the intermediate or LLC. The blocks that are 
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referenced frequently stay in L1, therefore L2 has space for other 

blocks. 

One disadvantage of non-inclusive caches is coherence. A non- 

inclusive LLC that needs to evict a block will have to broadcast the 

invalidation to the higher level caches, because that information is 

not present in the LLC, unless a separate directory is implemented 

and then it must access the directory and pay its extra latency. 

However, there has been work to separate the cache coherence 

structures (i.e. directory) from the data blocks of the cache. Zhao 

et al. proposed a non-inclusive cache with an inclusive directory 

to keep the positive features of both inclusive and non-inclusive 

policies [39]. 

 Exclusive. An exclusive cache does not include any repli- cated 

block from higher levels, thus increasing the total amount of data 

blocks that can fit in the whole cache hierarchy. 

The exclusive inclusion policy is similar to a victim cache [23]. In 

a three-level cache hierarchy, the LLC would be the victim cache of a 

two-level cache hierarchy. Victim caches contain the evicted blocks 

from the higher levels aiming to reduce conflict misses. This was 

originally introduced as a fully associative small cache to reduce 

conflict misses from direct-mapped caches. 

However, it incurs higher complexity. In the example of two 

cache levels (L1 and L2), when a block that is in L1 (and not in L2) 

is evicted, it will be allocated in L2. When the block is accessed 

again, it will be invalidated in L2 and allocated in L1. This generates 

more work to do on an L2 hit. Also, it makes impossible to use the 

recency of a block to choose which block to replace when the L2 

cache is full, as it only contains data that was evicted from L1 and 

not accessed again since that eviction. 

Jouppi and Wilton identified the benefits of exclusive caching 

and evaluated them [24]. They found that the extra space of not 

duplicating the data in the two levels of cache and a higher associa- 

tivity in the LLC was indeed beneficial. 

Ten years later, Zheng et al. evaluated the performance of exclu- 

sive caches with respect to inclusive [40]. They found that exclusive 

caching is beneficial for most of the benchmarks they tried (SPEC 

2000), but especially for smaller lower-level caches. They suggest 

that exclusive caches are more suitable for server applications and 

embedded systems. 

The main benefits when using exclusive caches are: 

Less conflict misses like with a higher associativity: two 

memory references that are mapped to the same set can 

reside one in each level instead of only one. 

Higher hit rate thanks to a higher effective space by avoiding 

the blocks duplication in different levels. This is especially 

relevant in caches with more than 3 levels of cache or with 

large higher level caches. 

Avoids premature evictions from the higher levels by not 

requiring back-invalidations (compared to inclusive). 

The main drawbacks and limitations of exclusive caches are: 

Less design flexibility because the block size of the exclusive 

cache has to be equal as the other levels. 

More control complexity and power consumption due to the 

higher data movement of blocks. 

More complex cache coherence protocols and more area 

required in symmetric multiprocessing (SMP). 

One fundamental difference of exclusive caches is that clean lines 

are moved to the LLC when evicted from the L2. In inclusive and 

non-inclusive caches, only dirty lines are moved. This significantly 

increases the traffic generated by L2 evictions and affects data 

reusability in the LLC. In non-inclusive, the LLC may have already 

evicted a line before, when it is evicted from the L2. If the line is 

clean, the L2 would just invalidate/replace the line with no effects in 

the LLC. In the exclusive cache, conversely, the L2 copies the clean 

evicted data to the LLC, which allocates it, potentially replacing 

other data which may be useful in the near future. 

Some exclusive cache designs allocate block in an inclusive way, 

i.e., allocate in all levels, for specific types of data, for example for 

data shared between multiple threads. In this case the reasoning is 

that if other threads may access the data, having it allocated in the 

last-level cache avoid the three-way trip to read it from a remote 

private cache. For this type of exclusive behavior with exception, 

we use the term non-exclusive. This types of caches are sometimes 

referred as non-inclusive. In this paper, non-inclusive cache only 

refers to the definition provided in Section 2.3.2. 

3 METHODOLOGY 

 Benchmarks 

We used all the traces from the SPECspeed CPU2017 benchmark 

suite [32], single-threaded and both integer and floating point. We 

also used three single threaded server workload traces from Cloud- 

Suite [9] (data_caching, sat_solver and graph_analytics using the 

default inputs specified in the paper), and a trace from a machine 

learning workload "mlpack_cf" [7]. In total, 24 benchmarks. 

Multi-core simulations execute a single benchmark per core. 

We used 20 mixes of SPECspeed CPU2017 benchmarks, a memory 

intensive selection from many runs, excluding mixes that were too 

similar. 

All traces warm-up until all finish 200 million instructions. For 

the timing modeling phase, all cores run until all have run at least 

one billion instructions, also known as last [35]. Some cores will 

run more than one billion instructions but only the first billion will 

count towards the statistics. This methodology is used so that all 

cores are running at the same time during all the execution. This is 

important to model the effects of a shared LLC in a more realistic 

environment. 

 Simulator 

We used the ChampSim simulator, which is an extended version 

of the simulator used in both 2nd Data and Cache Replacement 

Championships [6, 8]. This simulator models a simple multi-core 

out-of-order. The configuration we used is described in Table 2. 

The baseline consists of a 3-level cache hierarchy with all levels 

following a non-inclusive policy. All caches use copy back with 

write allocate write policies. 

 Configurations 

We evaluated multiple combinations of PFs, RPs and inclusion poli- 

cies for both single-threaded and multiprogrammed workloads. In 

• 

• 

• 

• 

• 

• 
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For the single-core, we show the speedup of a configuration 

over the baseline running a particular benchmark by extracting the 

instructions per cycle (IPC). 

For the multi-core simulations, we show the weighted speedup 

normalized to the baseline configuration. We compute the IPC of 

each of the cores in the multi-core execution and divide it by their 

single-core IPC (same cache size as in multi-core). We sum all the 

IPC to get a weighted speedup and then we normalize it to the 

baseline configuration. Equation 1 shows the speedup calculation 

used. 

 
. 

I PC I PCi 

 

 
4 RESULTS 

Speedupi =
 isinдle   −core   

IPCbaseline 
(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Simulator configuration. 

 

 

 
these experiments, we vary the inclusion policy of the LLC and 

keep the private L2 cache non-inclusive of the L1 cache, except in 

the case of the inclusive LLC, in which both the L2 and the L3 are 

inclusive. 

There are six evaluated L2 PFs: no PF, ip stride, next line, BOP, 

DAAMPM and KPCP. There are two evaluated L1 PFs: no PF and 

next line. 

There are five evaluated RPs: LRU, EAF, KPCR, SHiP and DRRIP. 

These PFs, replacement and inclusion policies are explained in detail 

in Section 2. 

 

3.4   Performance Measurement 

The baseline configuration used as reference in our evaluation is: 

non-inclusive cache inclusion policy, next-line L1 PF, no L2 PF, and 

the LRU RP. 

In this section we present our results. We analyze single- and multi- 

core experiments of all cache configurations previously described 

in Section 3.3. 

 
 Single-Core Results 

Figure 1 shows the geometric mean speedup of multiple cache 

configurations across all SPECspeed CPU2017 benchmarks. The 

baseline in this figure is: next_line L1 PF, no L2 PF, LRU RP and non- 

inclusive. Similarly, Figure 2 shows the same results across three 

CloudSuite benchmarks, and Figure 3 with MLpack benchmark 

(machine learning). 

The inclusion policy clearly affects the impact of the multiple PFs 

and RPs. For example, LRU is the least effective RP in combination 

with any of the evaluated PFs when the cache is inclusive or non- 

inclusive. In contrast, LRU is the best RP when the cache is exclusive 

regardless of the PF. 

Across the board, exclusive caches are inferior to inclusive and 

non-inclusive except for the case of LRU. When LRU is the RP 

of choice, exclusive caches are as performant or even marginally 

better than inclusive and non-inclusive. The exclusive cache results 

show a high ratio of copy-backs and write-backs in the LLC and an 

increase of the number of LLC evicts. These evictions may not be 

effective, given that they are not based on data reuse information 

but rather on the time when they were evicted from the L2. 

Figure 3 shows a larger difference between exclusive and inclusive/non- 

inclusive, where the exclusive performs better than the baseline 

compared to the other benchmarks but very low compared to the 

other inclusion policies. 

 
 Prefetcher Impact. The next_line PF and no PF configura- 

tions show the same performance for the same RP. This is 

because the L1 has a next_line PF in these experiments which 

already intro- duce the same kind of accesses into the L2 that, 

on miss, generate the same pattern a next_line L2 PF would. 

KPCP is the PF with the largest difference in performance for the 

multiple inclusion policies. For inclusive and non-inclusive caches, 

it achieves similar speedups to the other PFs. However, those same 

replacement policies in combination with KPCP actually worsen 

performance for exclusive caches compared to the baseline. 

Parameter Configuration 

L1 I-cache 

(private) 

64KB, 64B blocks, 8-way, 

8 MSHRs, 1 cycle latency, 

64 read/write/prefetch queue size 

L1 D-cache 

(private) 

64KB, 64B blocks, 8-way, 

8 MSHRs, 4 cycles latency, 

64 read/write/prefetch queue size 

L2 unified cache 

(private) 

512KB, 64B blocks, 8-way 

16 MSHRs, 8 cycles latency, 

32 read/write/prefetch queue size 

non-inclusive 

L3 unified cache 

(shared) 

2MB/core, 64B blocks, 16-way 

32 MSHRs, 20 cycles latency, 

16/core read/write/prefetch queue size 

non-inclusive 

I-TLB 

(private) 

64 entries, 4-way 

8 MSHR, 1 cycle latency 

D-TLB 

(private) 

64 entries, 4-way 

8 MSHR, 1 cycle latency 

L2 TLB 

(shared) 

1536 entries, 12-way 

16 MSHR, 8 cycle latency 

Frequency 4GHz 

Page size 4KB 

Fetch, decode, retire 4 wide 

Execution 6 wide 

Load Queue 2 wide 

Store Queue 1 wide 

DRAM 2 channels (1 DIMM per channel), 

8 banks (64MB per bank), 

8 ranks (512MB per rank), 

4GB per DIMM 

DRAM channel width 8 

DRAM I/O frequency 800MHz 

Branch Predictor Perceptron 

Reorder Buffer size 256 

Pipeline depth 5 
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Figure 1: Geomean speedups of SPECspeed CPU2017 benchmarks to compare different configurations of L2 PFs, RPs and cache 

inclusions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The Y-axis shows 

the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache 

configurations, in order of: L2 PF (l2p) and RP (repl). 

 

Figure 2: Geomean speedups of CloudSuite benchmarks to compare different configurations of L2 PFs, RPs and cache inclu- 

sions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The Y-axis shows the 

speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache 

configurations, in order of: L2 PF (l2p) and RP (repl). 

 

DAAMPM is the best PF among all configurations for SPEC. 

For the exclusive cache, it is the one that achieves the best results 

regardless of the RP. 

 Replacement Policy Impact. There is no clear winner among RPs, 

but there are a few patterns that indicate that the LRU RP is 

among the best options to use in general for an exclusive cache 

independently of the PFs on a single core. That is not the case in the 

machine learning benchmark where LRU performs like the other 

RPs. 

SHiP, similarly to others, does not work well for exclusive caches. 

SHiP uses a predictor on placement and updates it using the pro- 

gram counter (PC). PC-based policies such as SHiP rely on the 

correlation between the PC of a memory access instruction and the 

reuse behavior of the block accessed by that instruction. However, 

only evicted blocks are placed into an exclusive LLC. The PC of the 

memory access instruction that triggers a block eviction has very little 

correlation with the reuse of that block. Thus, PC-based policies only 

work well with inclusive and non-inclusive caches. 

The KPCR RP makes the inclusive cache perform worse than 

non-inclusive. Other RPs have a closer behavior for non-/inclusive 

policies. 

Furthermore, exclusive caches do not show much sensitivity to 

the RP. In contrast, inclusive and non-inclusive caches are more 

variable. The speedup percentage differences are within 5% because 

several benchmarks are insensitive to cache behavior while others 

see a larger impact. The benchmarks that show more sensitivity 

are: gcc, lbm, mcf, cactuBSSN, fotonik3d, satSolver and MLpack. 
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Figure 3: Geomean speedups of the Machine Learning "mlpack" benchmark to compare different configurations of L2 PFs,  

RPs and cache inclusions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The 

Y-axis shows the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the 

different cache configurations, in order of: L2 PF (l2p) and RP (repl). 

 

 Multi-Core Results 

Figure 4 shows the weighted speedup of all cache configurations in 

multi-core. The baseline in the figure is: next_line L1 PF, no L2 PF, 

LRU RP and all non-inclusive caches. This shows the speedup of 

the multi-core experiments compared to the single-threaded case. 

Similarly, Figure 5 shows the same results for CloudSuite (three 

mixes), and Figure 6 for MLpack (four instances). 

In multi-core, the performance difference in an exclusive cache 

is more variable across the RPs. LRU does not work as efficiently 

in multi-thread as it did in single-threaded runs; it is actually the 

worst one, as expected. 

Figure 5 shows the only one case where the exclusive is as good 

or better than the other inclusion policies, even though it is a small 

difference. And, although LRU is not the worse RP, it is still better 
than in non-/inclusive. 

hit and any bookeeping information stored with the block is lost. 

These policies, however, maintain reuse information in a separate 

hardware structure which is kept even on a block miss or eviction. 

For example, the EAF RP stores the evicted memory addresses and, 

on that address miss, it inserts at the MRU position to protect it. 

SHiP has a table of counters indexed by a partial tag. The coun- 

ters are updated on hit and eviction. Both things happen on the 

cache either the block is removed or not in the LLC. Even though 

the program counter has no correlation with the block, SHiP is 

still able to get the general trend on dead blocks in multi-core. As 

demonstrated with KPCR, even a global up/down counter can be a 

good first-cut dead-block predictor. SHiP can be seen as roughly 

tracking the tendency of blocks to be dead within a given program 

phase despite the lack of correlation between specific PCs and block 

accesses. Similarly, KPCR also updates a global counter on hit and 
Figure 6 shows that the difference between exclusive and inclusive/non- miss. 

inclusive is smaller than in one core. Overall, in all multi-core plots 

the exclusive cache is more competitive than for single-core. This 

is encouraging since one of the reasons to use exclusive caches is 

the increase of the number of cores per chip. 

 Prefetcher Impact. Figure 4 shows that ip_stride performs 

generally better across inclusion policies. 

The PF seems to be determining for exclusive and non-inclusive 

LLCs, as different RPs using the same PF do not show large varia- 

tions. The inclusive LLC, however, is more sensitive to the RP. This 

makes sense because replacement in an inclusive LLC may cause 

invalidations of useful data in upper-level caches and, therefore, 

getting replacements right is as important or more than precise 

prefetching. 

 Replacement Policy Impact. Figure 4 shows that the best RPs 

for exclusive caches are EAF, SHiP and KPCR. These RPs are 

different from the others in this study because they store informa- 

tion about accesses to a block even after having evicted the block 

from the LLC. In an exclusive cache, a block will be evicted on 

These techniques employ these separate hardware structures 

to reduce the area and power impact of the RP. Collaterally, these 

mechanisms help exclusive caches because blocks are invalidated 

on hit and therefore lose reuse information that is stored with 

the block. By keeping these separate hardware structures, RPs in 

an exclusive cache can prioritize blocks that have been evicted or 

accessed recently even if those blocks are not in the cache. 

SHiP and KPCR are the best RPs for inclusive caches. Some 

benchmarks in the multiprogram mixes are cache resident in private 

caches. With an inclusive cache, the data of those threads will 

eventually be evicted given that their blocks are not promoted in 

the LLC by hits in the private caches. If that thread’s data is inserted 

in the LLC with low priority it will be evicted faster. This happens 

with DRRIP, which inserts with a maximum age of two. SHiP and 

KPCR use a similar strategy but outperform DRRIP across inclusive 

configurations. This is because their improvements may mitigate 

the described effects for inclusive caches. SHiP can insert into a 

lower age position (higher priority) when it predicts the block is 

live and help keep the private-cache-resident data in the LLC for 
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Figure 4: Weighted speedups of 4-core multiprogrammed SPECspeed CPU2017 benchmark mixes to compare different config- 

urations of PFs, RPs and cache inclusions. The configurations compared are: L2 PF, RP and cache inclusion. The Y-axis shows 

the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache 

configurations, in order of: L2 PF (l2p) and RP (repl). 

 

Figure 5: Geomean speedups of CloudSuite benchmarks to compare different configurations of L2 PFs, RPs and cache inclu- 

sions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The Y-axis shows the 

speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache 

configurations, in order of: L2 PF (l2p) and RP (repl). 

 

longer. An aggressive PF of another thread can also interfere with 

those cache resident threads by allocating prefetched blocks in 

the inclusive LLC and evict useful data. KPCR keeps a separate 

hysteresis counter for prefetches and demand misses. If prefetches 

are identified as dead, they would be inserted with an age of three 

(the lowest priority value), therefore not displacing useful data. 

 
 L1 Prefetching 

We ran the same configurations as in previous sections but without 

the L1 PF. Contrary to expectations, most configurations without L1 

PF perform better. Figure 7 shows that the speedups without L1 PF 

are generally higher than those with a next_line L1 PF. We observed 

the same behavior on the other benchmarks and in multi-core. 

The only configuration that performs worse without L1 PF is 

when there is no L2 PF either. In all other cases it appears that 

L1 PFs interfere with the L2 prefetches and worsen performance. 

We generated the same results for multi-core without L1 PF and it 

shows the same performance improvement over next_line L1 PF. 

There is a need to design L1 and L2 PFs so they cooperate instead of 

interfere. 

 
 Case Studies on Inclusion Impact 

We looked at the statistics of the most sensitive benchmarks to 

inclusion and cache management techniques. We observed that 

some benchmarks such as satSolver and cactuBSSN did not work 

well for inclusive caches for both SHiP and KPCR. satSolver shows 

a slowdown of 0.92 compared to either exclusive and non-inclusive, 

and cactuBSSN a 0.77 slowdown. 

In satSolver, the L2 evictions due to the inclusivity for KPCR are 

between 34 and 27 million (M) for most PF combinations, while for 
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Figure 6: Geomean speedups of the Machine Learning "mlpack" benchmark to compare different configurations of L2 PFs, 

RPs and cache inclusions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The 

Y-axis shows the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the 

different cache configurations, in order of: L2 PF (l2p) and RP (repl). 

 

Figure 7: Geomean speedups to compare different configurations of PFs, RPs and cache inclusions including with and without 

L1 PF. The configurations compared are: L1 PF, L2 PF, RP and cache inclusion. The Y-axis shows the speedup over the baseline 

configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache configurations, in order of: RP 

(repl), L2 PF (l2p) and L1 PF (l1p). 

 

the rest of the RPs it is under 1M. In SHiP, the difference is also 

clear but smaller than KPCR being between 24-20M versus 1M. The 

L1 evictions due to inclusivity show the same trend, with KPCR 

and SHiP clearly higher than the rest. Our hypothesis is that these 

RPs are so effective that they predict a block dead in LLC so fast 

that the higher level caches might still be using those blocks. For 

some cases this works well when the block is indeed dead. 

In cactuBSSN, the L2 evictions due to the inclusivity for SHiP 

are between 12M and 10M while others are below 1M. In this case, 

KPCR is around 2.5-1.5M, a smaller difference than SHiP. In this 

case, the inclusion policy degrades performance (0.7 slowdown). 

The ones that show more difference in evictions due to inclusivity 

and performance are the ones with a combination of PFs of: no PF 

and next_line (e.g. no L1 PF + next_line L2 PF, next_line or none 

in both, or another order). Our hypothesis is that a not so smart 

(or lack of) PF is generating back invalidations plus interfering 

with the SHiP replacement policy, which is not core aware and can 

generate more back invalidations). 

Cache inclusion techniques should be designed taking into ac- 

count the inclusion policy. This section indicates that the PF should 

also be designed accordingly not to interfere. 
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 Summary 

The single-core simulations showed BOP and DAAMPM PFs worked 

generally better for any inclusion policy. The best RPs for inclusive 

and non-inclusive are EAF and SHiP, in contrast to exclusive with 

LRU. 

The multi-core simulations showed, for non-inclusive, that the 

best PF depends on the cache configuration, but in general, ip_stride 

works well. The RP that works better in all cases is SHiP. That is 

very clear in non-inclusive caches. However, in inclusive caches 

KPCR also works well, and in exclusive both SHiP and KPCR work 

well in addition to EAF. 

5 CONCLUSIONS 

Cache management techniques have been mostly designed and 

evaluated in the context of non-inclusive LLCs. However, many 

modern processors implement their LLC with either an inclusive 

or exclusive policy. In this paper we explored the design space of 

cache management techniques in different cache configurations, 

with a focus on the cache inclusion policy. We implemented an 

inclusive and an exclusive policy on top of a simulator that had 

a non-inclusive policy. We evaluated different prefetchers (PFs), 

replacement policies (RPs) and number of cores for each inclusion 

policy. 

The results demonstrate that a cache management technique that 

performs well in one inclusion policy does not necessarily work 

well for another inclusion policy. Different inclusion policies have 

a different behavior which affects how different cache management 

techniques impact performance. Inclusive caches are more sensitive 

to the RP in use while non-inclusive and exclusive caches are largely 

influenced by PF choice. This makes sense as replacements may 

trigger invalidations of potentially-useful data. 

RPs that keep global reuse information in separate structures 

perform better for exclusive caches. Exclusive caches invalidate 

cache blocks on hit which renders reuse information contained 

along cache blocks irrelevant. The use of the program counter is 

also useless because there is no correlation between the program 

counter and the block that is placed in the LLC on L2 evictions. 

Exclusive caches have a larger capacity than inclusive and non- 

inclusive. However, our results show that exclusive caches perform 

worse in most cases. This shows a need for PFs and RPs tailored for 

exclusive caches to unleash its performance potential. The multi- 

core results are encouraging since they highlight the higher effec- 

tive capacity. 

Based on all this data, we propose some features that an ex- 

clusive LLC design should include. First, to overcome the lack of 

recency information, forward such information together with the 

data block on eviction, such as ExRRIP and Bypass and Insertion 

RPs. Second, to solve the information loss on a hit when the infor- 

mation lives with the block, an approach like EAF helps by keeping 

a separate structure that tracks the evicted addresses, so that infor- 

mation outlives the block and helps prioritizing blocks on future 

replacements. 
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