
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

192

The Effect of Policies for Cache Inclusion on
 Cache Management Methods

Mr. Gopal Behera

1
*, Mrs.Pragyan Paramita Panda

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

gopalbehera@thenalanda.com*, pragyanparamita@thenalanda.com

ABSTRACT

Caches were created to lessen the significant difference in

performance between the processor and memory. To further

enhance performance, a variety of last-level cache (LLC)

management approaches have been developed. A first finding is

that non-inclusive caches have been used to create and test the

majority of strategies in the literature. Another finding is that a lot

of contemporary processors have either inclusive or exclusive

practises in their LLCs. Due to their greater effective capacity,

exclusive caches are becoming more and more popular as the

number of cores rises. Thus, unique multi-core caches are

anticipated in the future. These two observations highlight a

discrepancy between the evaluation's cache inclusion policy

assumptions and the reality of current and possibly future

processor implementations. The effectiveness of current cache

management techniques for a variety of inclusivity options is

quantified in this paper, and it also discusses the question of how

sensitive they are to inclusion policies. Finally, a concept LLC

design is suggested that includes the features that are most

appropriate for exclusive caches. The findings demonstrate that

due to their close interaction, modern prefetchers are essential for

evaluating replacement strategies, and inclusive caches necessitate

a less aggressive prefetching strategy to prevent excessive back-

invalidation. The findings also identify the characteristics needed

for an exclusive cache's replenishment policy. LLCs must receive

reuse data from lower cache levels along with the data block

because they lack recency information and it is difficult to

determine the memory access that allocated the data. Moreover,

the proposed LLC features include keeping global reuse

information structures detached from data blocks to prevent losing

that information when the data is evicted on hit.

CCS CONCEPTS

Computer systems organization → Parallel architectures;

KEYWORDS

Inclusion policies, cache hierarchy, cache management, cache re-

placement policies, hardware prefetching

INTRODUCTION

Main memory technology has not kept pace with the rapid im-

provement of CMOS-based processors, giving rise to the so-called

Memory Wall [38]. Modern multi-core processors rely on large on-

chip caches to mitigate the disparity in access latency to main

memory. The last-level cache (LLC), i.e., the level closer to memory

and further away from cores, is typically shared among all cores

in the chip. When shared, it stores blocks from all cores and is

typically sized at about 1-2 megabytes (MB) per core. Increasing

the number of cores requires a larger cache to maintain high core

performance.

Efficient LLCs should keep data that is being used and going

to be used soon. Many cache management techniques have been

investigated to bring the data before its use (prefetching) and to

keep only the useful data (replacement policies).

There are several ways to manage how data is allocated in the

multiple levels of cache depending on whether a lower level (closer

to memory) includes data resident in higher levels (closer to cores).

In inclusive caches, a data block present in a cache must also be

present in all of its corresponding lower levels. The result of this

policy is a lower effective cache capacity due to the data replica-

tion across cache levels, and the potential performance and energy

impact of inclusiveness-induced invalidations.

Non-inclusive caches attempt to reduce the limitations of inclu-

sive accesses by not enforcing inclusivity in higher cache levels.

When a data block is accessed, it is still allocated in all cache levels.

However, an eviction on a cache does not trigger back invalida-

tions to higher levels. There is still data replication, but there are

not inclusiveness-induced invalidations affecting performance and

energy.

Exclusive caches go one step further by enforcing that a data

block present in a cache cannot be also present in the corresponding

higher-level cache. Only data evicted from higher levels is present

in the exclusive cache, effectively making the last-level cache into

a victim cache [23]. Thus, there is no data replication and there

cannot be inclusiveness-induced invalidations.

 Industry

Modern processors use different types of inclusion policies in each

cache level. The most common is to either use an inclusive or an

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

193

exclusive policy in the LLC and an inclusive or non-inclusive in the

lower levels. Below are a few examples of real processors with the

information on the inclusion policy they use. None of which has a

non-inclusive LLC.

AMD processors generally use exclusive LLCs and Intel proces-

sors, inclusive. The AMD Athlon (Thurderbird architecture) had

an exclusive L2 (LLC), while its rival at the time, the Pentium 4

(from Willamette) [14] had inclusive L2 (LLC). Currently, the latest

AMD Zen architecture has a (mostly) exclusive L3. Current Intel

processors like Sandy Bridge, Ivy Bridge and Skylake have an in-

clusive L3 and a non-inclusive L2 [15]. The Intel Knights Landing

has an L2 (LLC) that is inclusive of the L1D and non-inclusive of

L1I [16]. However, Intel recently announced the Skylake-X which

has a mostly exclusive LLC (which they call non-inclusive) [1].

The ARM Cortex-A9 can have an (optional) L2 cache (LLC). The

core has support to be attached to exclusive L2 caches as long as that

is properly configured both in the core and L2 controller sides [2].

The processors in the IBM POWER series had mostly L3 (LLC)

exclusive caches. The POWER5 has an L3 exclusive and an L2

inclusive of both L1D and L1I [11]. The POWER6 has an L3 exclusive

cache and the POWER7 has an L3 mostly exclusive cache [13]. The

IBM zEC12 has an inclusive L3 (on die) and an inclusive L4 (off-die,

on-package) [12].

 Motivation

Research in replacement policies (RPs) has been focused on non-

inclusive and inclusive caches. Table 1 shows a list of relevant RPs

and the evaluated inclusion policy. There has been a lower effort in

exclusive caches.

 Inclusive Non-Incl. Exclusive

RRIP [21] X

SDBP [25] X

SHiP [36] X

GIPPR [22] X

MDPP [33] X

EAF [28] X

Perceptron [34] X

KPCR [26] X

Hawkeye [18] X

Bypass and Insertion [10] X

CHAR [5] X X

ExDRRIP [20] X

Table 1: State-of-the-art RPs and their inclusion policy.

The number of cores in multicore chips has been increasing in

recent years. A rule of thumb for the size of the LLC is 1-2MB

per core. High performance cores typically include 256-512KB of

private cache. With an inclusive cache, that could be a large amount

of capacity wasted on maintaining inclusivity in the LLC. Exclusive

caches are a promising option to increase the effective capacity

without increasing chip area.

Most RPs in the literature have been designed and evaluated in

inclusive and non-inclusive caches. However, that does not mean

that they would also work well on exclusive caches since they have

different properties. For example, in an exclusive LLC, a block is

evicted on hit while many RPs are based on the reuse of a block.

Inclusive policies in RP design are often overlooked or not even

mentioned. The motivation of this paper is to determine whether

there is a need for designing different cache management tech-

niques depending on the inclusion policy, with a focus on the exclu-

sive caches. For this, we investigate how the existing RPs perform

in different inclusion policies.

 Contributions

The contributions of this paper are:

A comprehensive evaluation of multiple cache configura-

tions including multiple RPs and prefetchers (PFs) for all

three inclusion policies: inclusive, non-inclusive and exclu-

sive caches.

A discussion on the results targeting to understand the gaps

in the design of cache management to improve performance

in the presence of a given inclusion policy.

2 BACKGROUND

One solution to mitigate the processor and memory performance

gap was introducing several levels of cache into the memory hi-

erarchy to bring data closer to the processor. To make them more

efficient, there has been extensive research on improving memory

management, mostly PFs and RPs.

 Prefetchers

Prefetching is a technique used to hide memory latency by bringing

data that will potentially be needed by the processor to a closer level

of the memory hierarchy. There is, however, the risk of polluting

the cache. The PF needs to be accurate (bring the data that is going

to be requested) and timely (the prefetched data arrived to the

cache made the accesses hit). We describe below the PFs used in

our experiments.

Stride-based. Code and data structures (e.g. arrays, matrices), are

stored sequentially in memory and accessed consecutively. These

PFs exploit this spatial locality by prefetching: the next block (stride

of 1) like the Next-line [31]; the block plus an offset (stride of "offset"

for timeliness) like the Instruction pointer-based stride [3]; the block

plus a dynamic offset (dynamic stride) like Best Offset [27].

DRAM-Aware Access Map Pattern Matching. Ishii et al [17] pro-

posed a PF to exploit locality in DRAM called DRAM-aware access

map pattern matching (DAAMPM). Before the time the prefetch

is going to be used, they suggest waiting and reordering prefetch

requests to optimize row activation. The prefetches are reordered

so that all blocks that need to access the same row are done together.

They also claim that many RPs are unaware about which blocks

were from a prefetch or by demand. They added a prefetch bit to

avoid promoting a prefetch hit.

Kill the Program Counter. There has been little work on studying

the interaction between cache RPs and PFs, and their effect in each

of the cache levels [17, 29, 37]. Those studies show that the benefit

of RPs can be small or negative when combined with a PF. Kim et

al. proposed a holistic approach to speculatively manage all cache

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

194

levels with coordinated PF and RP [26] called kill the program

counter (KPC). This approach aims to improve performance and

reduce the overall hardware budget necessary for both PF and RP.

The PF component (KPCP), is a PF that decides in which level of

the hierarchy to prefetch each specific block. They use a signature

table to store a compressed history of past L1 misses. The history

is used as a signature to index a pattern table to predict the next

block. The predicted block plus the previous history generates

another signature which is again used. This technique has an initial

training phase that sets a confidence value that is increased as

PFs are useful. Later, PFs are only triggered if confidence on the

prediction is high. The RP component (KPCR), is a low-overhead RP

that uses two global hysteresis to predict dead blocks by tracking

global reuse behavior. One hysteresis is for demands and, the other,

for prefetches.

 Replacement Policies

RPs improve the management of cache contents to evict first the

blocks that are not likely to be used again. RPs are used at allocation

time when a cache set is full: the algorithm chooses which block

to evict from the cache to place the new one. They could also hurt

performance if they mispredict.

Bélády proposed an optimal cache replacement algorithm as-

suming knowledge on the future [4]. As a processor does not have

such knowledge, there has been plenty of work in cache replace-

ment algorithms. We explain below a few, focusing on the ones we

experimented with.

Aging-based. Many RPs are based on the block’s reuse, by aging

the blocks over time and evicting the older ones [21, 22, 30, 33, 34].

Jaleel et al. proposed an exclusive version of RRIP where they keep

a bit in L2 to know if the block came from LLC (previous hit) or

from memory [20].

Signature-based. Other RPs make use of the program counter as

a signature to predict dead blocks [25, 36].

Evicted Address Filter. Seshadri et al. proposed evicted address

filter (EAF) claiming to address previous efforts deficiencies in

preventing both cache pollution and thrashing at the same time [28].

Bypass and Insertion Policies for Exclusive caches. Gaur et al. pro-

posed to use the number of trips to LLC (LLC hits) and their use

count in the L2 (L2 hits) cache [10]. Blocks with either a high use

or trip count will usually be predicted alive. They later extended

this work to also accommodate inclusive caches by using the same

prediction to hint the LLC with a dead block prediction [5]. When

the use or trip count number is low the LLC will mark the block

as the next victim. The same hint could be used to bypass in both

cases.

 Inclusion Policies

A cache level is related to the previous/higher level (if it exists)

depending on which data blocks each level contains. A particular

cache level can contain exactly all, exactly none or some of the

data blocks of the higher level. An inclusive cache contains all data

blocks of the higher level. An exclusive cache does not contain any

of the data blocks of the higher level. A non-inclusive cache can

contain some blocks from the higher level but not necessarily all or

none. Inclusion policy trades off ease of implementation of cache

coherence with capacity. The choice of inclusion policy for a cache

hierarchy is a design decision with many inputs beyond the scope

of this work, however as we demonstrate this choice has a large

impact on the effectiveness of cache management techniques.

 Inclusive. An inclusive cache level contains all data blocks

from higher levels plus some other blocks. That is, a data

block is replicated in both cache levels.

In a 2-level cache hierarchy, the data block will be placed in

both cache levels on an L2 miss. If the block is evicted from the L1

and, later, a request comes (L1 miss), the data may still be in the

L2, thus avoiding accessing main memory. On an L1 eviction, only

write backs of dirty blocks are required. If the block is clean, there

is no need to copy it back to the L2 because it is already there as

per the inclusion policy. A potential problem is on an L2 eviction:

to preserve inclusivity, if the block was present in L1, it must be

evicted too.

In a multi-core system, an inclusive policy simplifies the coher-

ence protocol implementation. A cache wanting to invalidate copies

of a block in other caches has to notify the LLC because it has the

information of all blocks in all higher level caches. Therefore, it

avoids coherence message broadcasts, thus reducing complexity

and energy consumption. Also, coherence information (state and

caches having a copy) can be encoded with the cache block so the

information is available when accessing it, thus cutting latency of

potentially having to access separate structures, such as a directory.

One disadvantage is the effective cache size due to data dupli-

cation. The effective size of the cache hierarchy is the size of the

LLC. For example, in a 2-level cache hierarchy, the effective size is

the one from L2 because it contains all contents from L1. The L1

cache only keeps data closer but does not contribute with additional

capacity.

Another disadvantage is back invalidations. An eviction from

the LLC can generate an invalidation in L1 but, if it was present

in L1, the block may be in use. This can be a problem if the RP is

not aware of the usage of a block in the higher caches. Jaleel et

al. confirmed the limited performance of an inclusive cache comes

from back invalidations because the LLC RP is unaware of the core

presence and recency [19].

A related problem is that an inclusive cache has less flexibility to

improve cache management due to the impossibility of bypassing

the LLC to maintain inclusivity.

 Non-Inclusive. A non-inclusive cache level may or may not

contain blocks from higher levels. The data is replicated when

there is a miss in a cache level, and the block is allocated in that

cache level and all higher ones. For example, in an L1 miss where

the block is in none of the caches, the block will be allocated in L2

and L1. The difference with an inclusive cache is that the inclusivity

is not enforced. That means, when a block is evicted from a lower

level, it does not generate back invalidations to the higher levels.

This simplifies the implementation of this type of caches.

The effective cache size is between the size of L2 and the sum

of both. The cache hierarchy usage in a case with non-inclusive

cache changes depending on the application and RP. Conflict misses

will be reduced in the intermediate or LLC. The blocks that are

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

195

referenced frequently stay in L1, therefore L2 has space for other

blocks.

One disadvantage of non-inclusive caches is coherence. A non-

inclusive LLC that needs to evict a block will have to broadcast the

invalidation to the higher level caches, because that information is

not present in the LLC, unless a separate directory is implemented

and then it must access the directory and pay its extra latency.

However, there has been work to separate the cache coherence

structures (i.e. directory) from the data blocks of the cache. Zhao

et al. proposed a non-inclusive cache with an inclusive directory

to keep the positive features of both inclusive and non-inclusive

policies [39].

 Exclusive. An exclusive cache does not include any repli- cated

block from higher levels, thus increasing the total amount of data

blocks that can fit in the whole cache hierarchy.

The exclusive inclusion policy is similar to a victim cache [23]. In

a three-level cache hierarchy, the LLC would be the victim cache of a

two-level cache hierarchy. Victim caches contain the evicted blocks

from the higher levels aiming to reduce conflict misses. This was

originally introduced as a fully associative small cache to reduce

conflict misses from direct-mapped caches.

However, it incurs higher complexity. In the example of two

cache levels (L1 and L2), when a block that is in L1 (and not in L2)

is evicted, it will be allocated in L2. When the block is accessed

again, it will be invalidated in L2 and allocated in L1. This generates

more work to do on an L2 hit. Also, it makes impossible to use the

recency of a block to choose which block to replace when the L2

cache is full, as it only contains data that was evicted from L1 and

not accessed again since that eviction.

Jouppi and Wilton identified the benefits of exclusive caching

and evaluated them [24]. They found that the extra space of not

duplicating the data in the two levels of cache and a higher associa-

tivity in the LLC was indeed beneficial.

Ten years later, Zheng et al. evaluated the performance of exclu-

sive caches with respect to inclusive [40]. They found that exclusive

caching is beneficial for most of the benchmarks they tried (SPEC

2000), but especially for smaller lower-level caches. They suggest

that exclusive caches are more suitable for server applications and

embedded systems.

The main benefits when using exclusive caches are:

Less conflict misses like with a higher associativity: two

memory references that are mapped to the same set can

reside one in each level instead of only one.

Higher hit rate thanks to a higher effective space by avoiding

the blocks duplication in different levels. This is especially

relevant in caches with more than 3 levels of cache or with

large higher level caches.

Avoids premature evictions from the higher levels by not

requiring back-invalidations (compared to inclusive).

The main drawbacks and limitations of exclusive caches are:

Less design flexibility because the block size of the exclusive

cache has to be equal as the other levels.

More control complexity and power consumption due to the

higher data movement of blocks.

More complex cache coherence protocols and more area

required in symmetric multiprocessing (SMP).

One fundamental difference of exclusive caches is that clean lines

are moved to the LLC when evicted from the L2. In inclusive and

non-inclusive caches, only dirty lines are moved. This significantly

increases the traffic generated by L2 evictions and affects data

reusability in the LLC. In non-inclusive, the LLC may have already

evicted a line before, when it is evicted from the L2. If the line is

clean, the L2 would just invalidate/replace the line with no effects in

the LLC. In the exclusive cache, conversely, the L2 copies the clean

evicted data to the LLC, which allocates it, potentially replacing

other data which may be useful in the near future.

Some exclusive cache designs allocate block in an inclusive way,

i.e., allocate in all levels, for specific types of data, for example for

data shared between multiple threads. In this case the reasoning is

that if other threads may access the data, having it allocated in the

last-level cache avoid the three-way trip to read it from a remote

private cache. For this type of exclusive behavior with exception,

we use the term non-exclusive. This types of caches are sometimes

referred as non-inclusive. In this paper, non-inclusive cache only

refers to the definition provided in Section 2.3.2.

3 METHODOLOGY

 Benchmarks

We used all the traces from the SPECspeed CPU2017 benchmark

suite [32], single-threaded and both integer and floating point. We

also used three single threaded server workload traces from Cloud-

Suite [9] (data_caching, sat_solver and graph_analytics using the

default inputs specified in the paper), and a trace from a machine

learning workload "mlpack_cf" [7]. In total, 24 benchmarks.

Multi-core simulations execute a single benchmark per core.

We used 20 mixes of SPECspeed CPU2017 benchmarks, a memory

intensive selection from many runs, excluding mixes that were too

similar.

All traces warm-up until all finish 200 million instructions. For

the timing modeling phase, all cores run until all have run at least

one billion instructions, also known as last [35]. Some cores will

run more than one billion instructions but only the first billion will

count towards the statistics. This methodology is used so that all

cores are running at the same time during all the execution. This is

important to model the effects of a shared LLC in a more realistic

environment.

 Simulator

We used the ChampSim simulator, which is an extended version

of the simulator used in both 2nd Data and Cache Replacement

Championships [6, 8]. This simulator models a simple multi-core

out-of-order. The configuration we used is described in Table 2.

The baseline consists of a 3-level cache hierarchy with all levels

following a non-inclusive policy. All caches use copy back with

write allocate write policies.

 Configurations

We evaluated multiple combinations of PFs, RPs and inclusion poli-

cies for both single-threaded and multiprogrammed workloads. In

•

•

•

•

•

•

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

196

For the single-core, we show the speedup of a configuration

over the baseline running a particular benchmark by extracting the

instructions per cycle (IPC).

For the multi-core simulations, we show the weighted speedup

normalized to the baseline configuration. We compute the IPC of

each of the cores in the multi-core execution and divide it by their

single-core IPC (same cache size as in multi-core). We sum all the

IPC to get a weighted speedup and then we normalize it to the

baseline configuration. Equation 1 shows the speedup calculation

used.

.

I PC I PCi

4 RESULTS

Speedupi =
 isinдle −core

IPCbaseline
(1)

Table 2: Simulator configuration.

these experiments, we vary the inclusion policy of the LLC and

keep the private L2 cache non-inclusive of the L1 cache, except in

the case of the inclusive LLC, in which both the L2 and the L3 are

inclusive.

There are six evaluated L2 PFs: no PF, ip stride, next line, BOP,

DAAMPM and KPCP. There are two evaluated L1 PFs: no PF and

next line.

There are five evaluated RPs: LRU, EAF, KPCR, SHiP and DRRIP.

These PFs, replacement and inclusion policies are explained in detail

in Section 2.

3.4 Performance Measurement

The baseline configuration used as reference in our evaluation is:

non-inclusive cache inclusion policy, next-line L1 PF, no L2 PF, and

the LRU RP.

In this section we present our results. We analyze single- and multi-

core experiments of all cache configurations previously described

in Section 3.3.

 Single-Core Results

Figure 1 shows the geometric mean speedup of multiple cache

configurations across all SPECspeed CPU2017 benchmarks. The

baseline in this figure is: next_line L1 PF, no L2 PF, LRU RP and non-

inclusive. Similarly, Figure 2 shows the same results across three

CloudSuite benchmarks, and Figure 3 with MLpack benchmark

(machine learning).

The inclusion policy clearly affects the impact of the multiple PFs

and RPs. For example, LRU is the least effective RP in combination

with any of the evaluated PFs when the cache is inclusive or non-

inclusive. In contrast, LRU is the best RP when the cache is exclusive

regardless of the PF.

Across the board, exclusive caches are inferior to inclusive and

non-inclusive except for the case of LRU. When LRU is the RP

of choice, exclusive caches are as performant or even marginally

better than inclusive and non-inclusive. The exclusive cache results

show a high ratio of copy-backs and write-backs in the LLC and an

increase of the number of LLC evicts. These evictions may not be

effective, given that they are not based on data reuse information

but rather on the time when they were evicted from the L2.

Figure 3 shows a larger difference between exclusive and inclusive/non-

inclusive, where the exclusive performs better than the baseline

compared to the other benchmarks but very low compared to the

other inclusion policies.

 Prefetcher Impact. The next_line PF and no PF configura-

tions show the same performance for the same RP. This is

because the L1 has a next_line PF in these experiments which

already intro- duce the same kind of accesses into the L2 that,

on miss, generate the same pattern a next_line L2 PF would.

KPCP is the PF with the largest difference in performance for the

multiple inclusion policies. For inclusive and non-inclusive caches,

it achieves similar speedups to the other PFs. However, those same

replacement policies in combination with KPCP actually worsen

performance for exclusive caches compared to the baseline.

Parameter Configuration

L1 I-cache

(private)

64KB, 64B blocks, 8-way,

8 MSHRs, 1 cycle latency,

64 read/write/prefetch queue size

L1 D-cache

(private)

64KB, 64B blocks, 8-way,

8 MSHRs, 4 cycles latency,

64 read/write/prefetch queue size

L2 unified cache

(private)

512KB, 64B blocks, 8-way

16 MSHRs, 8 cycles latency,

32 read/write/prefetch queue size

non-inclusive

L3 unified cache

(shared)

2MB/core, 64B blocks, 16-way

32 MSHRs, 20 cycles latency,

16/core read/write/prefetch queue size

non-inclusive

I-TLB

(private)

64 entries, 4-way

8 MSHR, 1 cycle latency

D-TLB

(private)

64 entries, 4-way

8 MSHR, 1 cycle latency

L2 TLB

(shared)

1536 entries, 12-way

16 MSHR, 8 cycle latency

Frequency 4GHz

Page size 4KB

Fetch, decode, retire 4 wide

Execution 6 wide

Load Queue 2 wide

Store Queue 1 wide

DRAM 2 channels (1 DIMM per channel),

8 banks (64MB per bank),

8 ranks (512MB per rank),

4GB per DIMM

DRAM channel width 8

DRAM I/O frequency 800MHz

Branch Predictor Perceptron

Reorder Buffer size 256

Pipeline depth 5

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

197

Figure 1: Geomean speedups of SPECspeed CPU2017 benchmarks to compare different configurations of L2 PFs, RPs and cache

inclusions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The Y-axis shows

the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache

configurations, in order of: L2 PF (l2p) and RP (repl).

Figure 2: Geomean speedups of CloudSuite benchmarks to compare different configurations of L2 PFs, RPs and cache inclu-

sions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The Y-axis shows the

speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache

configurations, in order of: L2 PF (l2p) and RP (repl).

DAAMPM is the best PF among all configurations for SPEC.

For the exclusive cache, it is the one that achieves the best results

regardless of the RP.

 Replacement Policy Impact. There is no clear winner among RPs,

but there are a few patterns that indicate that the LRU RP is

among the best options to use in general for an exclusive cache

independently of the PFs on a single core. That is not the case in the

machine learning benchmark where LRU performs like the other

RPs.

SHiP, similarly to others, does not work well for exclusive caches.

SHiP uses a predictor on placement and updates it using the pro-

gram counter (PC). PC-based policies such as SHiP rely on the

correlation between the PC of a memory access instruction and the

reuse behavior of the block accessed by that instruction. However,

only evicted blocks are placed into an exclusive LLC. The PC of the

memory access instruction that triggers a block eviction has very little

correlation with the reuse of that block. Thus, PC-based policies only

work well with inclusive and non-inclusive caches.

The KPCR RP makes the inclusive cache perform worse than

non-inclusive. Other RPs have a closer behavior for non-/inclusive

policies.

Furthermore, exclusive caches do not show much sensitivity to

the RP. In contrast, inclusive and non-inclusive caches are more

variable. The speedup percentage differences are within 5% because

several benchmarks are insensitive to cache behavior while others

see a larger impact. The benchmarks that show more sensitivity

are: gcc, lbm, mcf, cactuBSSN, fotonik3d, satSolver and MLpack.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

198

Figure 3: Geomean speedups of the Machine Learning "mlpack" benchmark to compare different configurations of L2 PFs,

RPs and cache inclusions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The

Y-axis shows the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the

different cache configurations, in order of: L2 PF (l2p) and RP (repl).

 Multi-Core Results

Figure 4 shows the weighted speedup of all cache configurations in

multi-core. The baseline in the figure is: next_line L1 PF, no L2 PF,

LRU RP and all non-inclusive caches. This shows the speedup of

the multi-core experiments compared to the single-threaded case.

Similarly, Figure 5 shows the same results for CloudSuite (three

mixes), and Figure 6 for MLpack (four instances).

In multi-core, the performance difference in an exclusive cache

is more variable across the RPs. LRU does not work as efficiently

in multi-thread as it did in single-threaded runs; it is actually the

worst one, as expected.

Figure 5 shows the only one case where the exclusive is as good

or better than the other inclusion policies, even though it is a small

difference. And, although LRU is not the worse RP, it is still better
than in non-/inclusive.

hit and any bookeeping information stored with the block is lost.

These policies, however, maintain reuse information in a separate

hardware structure which is kept even on a block miss or eviction.

For example, the EAF RP stores the evicted memory addresses and,

on that address miss, it inserts at the MRU position to protect it.

SHiP has a table of counters indexed by a partial tag. The coun-

ters are updated on hit and eviction. Both things happen on the

cache either the block is removed or not in the LLC. Even though

the program counter has no correlation with the block, SHiP is

still able to get the general trend on dead blocks in multi-core. As

demonstrated with KPCR, even a global up/down counter can be a

good first-cut dead-block predictor. SHiP can be seen as roughly

tracking the tendency of blocks to be dead within a given program

phase despite the lack of correlation between specific PCs and block

accesses. Similarly, KPCR also updates a global counter on hit and
Figure 6 shows that the difference between exclusive and inclusive/non- miss.

inclusive is smaller than in one core. Overall, in all multi-core plots

the exclusive cache is more competitive than for single-core. This

is encouraging since one of the reasons to use exclusive caches is

the increase of the number of cores per chip.

 Prefetcher Impact. Figure 4 shows that ip_stride performs

generally better across inclusion policies.

The PF seems to be determining for exclusive and non-inclusive

LLCs, as different RPs using the same PF do not show large varia-

tions. The inclusive LLC, however, is more sensitive to the RP. This

makes sense because replacement in an inclusive LLC may cause

invalidations of useful data in upper-level caches and, therefore,

getting replacements right is as important or more than precise

prefetching.

 Replacement Policy Impact. Figure 4 shows that the best RPs

for exclusive caches are EAF, SHiP and KPCR. These RPs are

different from the others in this study because they store informa-

tion about accesses to a block even after having evicted the block

from the LLC. In an exclusive cache, a block will be evicted on

These techniques employ these separate hardware structures

to reduce the area and power impact of the RP. Collaterally, these

mechanisms help exclusive caches because blocks are invalidated

on hit and therefore lose reuse information that is stored with

the block. By keeping these separate hardware structures, RPs in

an exclusive cache can prioritize blocks that have been evicted or

accessed recently even if those blocks are not in the cache.

SHiP and KPCR are the best RPs for inclusive caches. Some

benchmarks in the multiprogram mixes are cache resident in private

caches. With an inclusive cache, the data of those threads will

eventually be evicted given that their blocks are not promoted in

the LLC by hits in the private caches. If that thread’s data is inserted

in the LLC with low priority it will be evicted faster. This happens

with DRRIP, which inserts with a maximum age of two. SHiP and

KPCR use a similar strategy but outperform DRRIP across inclusive

configurations. This is because their improvements may mitigate

the described effects for inclusive caches. SHiP can insert into a

lower age position (higher priority) when it predicts the block is

live and help keep the private-cache-resident data in the LLC for

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

199

Figure 4: Weighted speedups of 4-core multiprogrammed SPECspeed CPU2017 benchmark mixes to compare different config-

urations of PFs, RPs and cache inclusions. The configurations compared are: L2 PF, RP and cache inclusion. The Y-axis shows

the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache

configurations, in order of: L2 PF (l2p) and RP (repl).

Figure 5: Geomean speedups of CloudSuite benchmarks to compare different configurations of L2 PFs, RPs and cache inclu-

sions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The Y-axis shows the

speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache

configurations, in order of: L2 PF (l2p) and RP (repl).

longer. An aggressive PF of another thread can also interfere with

those cache resident threads by allocating prefetched blocks in

the inclusive LLC and evict useful data. KPCR keeps a separate

hysteresis counter for prefetches and demand misses. If prefetches

are identified as dead, they would be inserted with an age of three

(the lowest priority value), therefore not displacing useful data.

 L1 Prefetching

We ran the same configurations as in previous sections but without

the L1 PF. Contrary to expectations, most configurations without L1

PF perform better. Figure 7 shows that the speedups without L1 PF

are generally higher than those with a next_line L1 PF. We observed

the same behavior on the other benchmarks and in multi-core.

The only configuration that performs worse without L1 PF is

when there is no L2 PF either. In all other cases it appears that

L1 PFs interfere with the L2 prefetches and worsen performance.

We generated the same results for multi-core without L1 PF and it

shows the same performance improvement over next_line L1 PF.

There is a need to design L1 and L2 PFs so they cooperate instead of

interfere.

 Case Studies on Inclusion Impact

We looked at the statistics of the most sensitive benchmarks to

inclusion and cache management techniques. We observed that

some benchmarks such as satSolver and cactuBSSN did not work

well for inclusive caches for both SHiP and KPCR. satSolver shows

a slowdown of 0.92 compared to either exclusive and non-inclusive,

and cactuBSSN a 0.77 slowdown.

In satSolver, the L2 evictions due to the inclusivity for KPCR are

between 34 and 27 million (M) for most PF combinations, while for

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

200

Figure 6: Geomean speedups of the Machine Learning "mlpack" benchmark to compare different configurations of L2 PFs,

RPs and cache inclusions. The configurations compared are: L2 PF, RP and cache inclusion, always with a next_line L1 PF. The

Y-axis shows the speedup over the baseline configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the

different cache configurations, in order of: L2 PF (l2p) and RP (repl).

Figure 7: Geomean speedups to compare different configurations of PFs, RPs and cache inclusions including with and without

L1 PF. The configurations compared are: L1 PF, L2 PF, RP and cache inclusion. The Y-axis shows the speedup over the baseline

configuration: no PFs, LRU RP and a non-inclusive cache. The X-axis shows the different cache configurations, in order of: RP

(repl), L2 PF (l2p) and L1 PF (l1p).

the rest of the RPs it is under 1M. In SHiP, the difference is also

clear but smaller than KPCR being between 24-20M versus 1M. The

L1 evictions due to inclusivity show the same trend, with KPCR

and SHiP clearly higher than the rest. Our hypothesis is that these

RPs are so effective that they predict a block dead in LLC so fast

that the higher level caches might still be using those blocks. For

some cases this works well when the block is indeed dead.

In cactuBSSN, the L2 evictions due to the inclusivity for SHiP

are between 12M and 10M while others are below 1M. In this case,

KPCR is around 2.5-1.5M, a smaller difference than SHiP. In this

case, the inclusion policy degrades performance (0.7 slowdown).

The ones that show more difference in evictions due to inclusivity

and performance are the ones with a combination of PFs of: no PF

and next_line (e.g. no L1 PF + next_line L2 PF, next_line or none

in both, or another order). Our hypothesis is that a not so smart

(or lack of) PF is generating back invalidations plus interfering

with the SHiP replacement policy, which is not core aware and can

generate more back invalidations).

Cache inclusion techniques should be designed taking into ac-

count the inclusion policy. This section indicates that the PF should

also be designed accordingly not to interfere.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

201

 Summary

The single-core simulations showed BOP and DAAMPM PFs worked

generally better for any inclusion policy. The best RPs for inclusive

and non-inclusive are EAF and SHiP, in contrast to exclusive with

LRU.

The multi-core simulations showed, for non-inclusive, that the

best PF depends on the cache configuration, but in general, ip_stride

works well. The RP that works better in all cases is SHiP. That is

very clear in non-inclusive caches. However, in inclusive caches

KPCR also works well, and in exclusive both SHiP and KPCR work

well in addition to EAF.

5 CONCLUSIONS

Cache management techniques have been mostly designed and

evaluated in the context of non-inclusive LLCs. However, many

modern processors implement their LLC with either an inclusive

or exclusive policy. In this paper we explored the design space of

cache management techniques in different cache configurations,

with a focus on the cache inclusion policy. We implemented an

inclusive and an exclusive policy on top of a simulator that had

a non-inclusive policy. We evaluated different prefetchers (PFs),

replacement policies (RPs) and number of cores for each inclusion

policy.

The results demonstrate that a cache management technique that

performs well in one inclusion policy does not necessarily work

well for another inclusion policy. Different inclusion policies have

a different behavior which affects how different cache management

techniques impact performance. Inclusive caches are more sensitive

to the RP in use while non-inclusive and exclusive caches are largely

influenced by PF choice. This makes sense as replacements may

trigger invalidations of potentially-useful data.

RPs that keep global reuse information in separate structures

perform better for exclusive caches. Exclusive caches invalidate

cache blocks on hit which renders reuse information contained

along cache blocks irrelevant. The use of the program counter is

also useless because there is no correlation between the program

counter and the block that is placed in the LLC on L2 evictions.

Exclusive caches have a larger capacity than inclusive and non-

inclusive. However, our results show that exclusive caches perform

worse in most cases. This shows a need for PFs and RPs tailored for

exclusive caches to unleash its performance potential. The multi-

core results are encouraging since they highlight the higher effec-

tive capacity.

Based on all this data, we propose some features that an ex-

clusive LLC design should include. First, to overcome the lack of

recency information, forward such information together with the

data block on eviction, such as ExRRIP and Bypass and Insertion

RPs. Second, to solve the information loss on a hit when the infor-

mation lives with the block, an approach like EAF helps by keeping

a separate structure that tracks the evicted addresses, so that infor-

mation outlives the block and helps prioritizing blocks on future

replacements.

REFERENCES
[1] AnandTech. 2017. Skylake-X’s New L3 Cache

Architecture. https://www.anandtech.com/show/11464/intel-announces-

skylakex-\ bringing-18core-hcc-silicon-to-consumers-for-1999/3.

(2017). Accessed: 2018-04-03.

[2] Arm. 2012. Cortex-A9 Technical Reference Manual.

http://infocenter.arm.com/

help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf.

(2012). Ac- cessed: 2017-04-30.

[3] Jean-Loup Baer and Tien-Fu Chen. 1991. An Effective On-chip Preloading Scheme

to Reduce Data Access Penalty. In Proceedings of the 1991 ACM/IEEE Conference

on Supercomputing (SC’91). ACM, New York, NY, USA, 176–186.

[4] Laszlo A. Bélády. 1966. A Study of Replacement Algorithms for a Virtual-storage

Computer. IBM Systems Journal 5, 2 (1966), 78–101.

[5] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan Bashyam, Sreenivas Subra-

money, and Joseph Nuzman. 2012. Introducing Hierarchy-awareness in Replace-

ment and Bypass Algorithms for Last-level Caches. In Proceedings of the 21st

International Conference on Parallel Architectures and Compilation Techniques

(PACT’12). IEEE, 293–304.

[6] CRC 2017. The 2nd Cache Replacement Championship. http://crc2.ece.tamu.edu.

(2017). Accessed: 2017-04-30.

[7] Ryan R Curtin, James R Cline, Neil P Slagle, William B March, Parikshit Ram,

Nishant A Mehta, and Alexander G Gray. 2013. MLPACK: A Scalable C++ Machine

Learning Library. Journal of Machine Learning Research 14 (2013), 801–805.

[8] DPC 2015. The 2nd Data Prefetching Championship. http://comparch-conf.

gatech.edu/dpc2. (2015). Accessed: 2017-04-22.

[9] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad

Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia

Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: a Study of Emerging

Scale-out Workloads on Modern Hardware. In ACM SIGPLAN Notices, Vol. 47.

37–48.

[10] Jayesh Gaur, Mainak Chaudhuri, and Sreenivas Subramoney. 2011. Bypass and

Insertion Algorithms for Exclusive Last-level Caches. In ACM SIGARCH Computer

Architecture News, Vol. 39. 81–92.

[11] IBM. 2012. IBM POWER5 Architecture. https://www.ibm.com/developerworks/

community/wikis/home?lang=en#!/wiki/Power%20Systems/page/POWER5%

20Architecture. (2012). Accessed: 2017-04-30.

[12] IBM. 2013. IBM zEC12. https://www.hotchips.org/wp-content/

uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.

220-zEC12-Processor-Sonnelitter-IBM-v5.pdf. (2013). Accessed: 2017-04-30.

[13] IBM. 2016. IBM POWER7 Architecture. https://www.cs.rice.edu/~johnmc/

comp522/lecture-notes/COMP522-2016-Lecture7-Power7.pdf. (2016). Accessed:

2017-04-30.

[14] Intel. 2000. Intel Pentium 4 Willamette. http://ark.intel.com/products/27426/

Intel-Pentium-4-Processor-1_70-GHz-256K-Cache-400-MHz-FSB. (2000). Ac-

cessed: 2017-04-30.

[15] Intel. 2016. Intel 64 and IA-32 Architectures Optimization Manual.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf. (2016). Accessed: 2017-04-30.

[16] Intel. 2016. Knights Landing Architecture. http://pages.cs.wisc.edu/~david/

courses/cs758/Fall2016/handouts/restricted/Knights-landing.pdf. (2016). Ac-

cessed: 2017-04-30.

[17] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2012. Unified Memory Optimizing

Architecture: Memory Subsystem Control with a Unified Predictor. In Proceedings

of the 26th ACM International Conference on Supercomputing (ICS’12). 267–278.

[18] Akanksha Jain and Calvin Lin. 2016. Back to the future: leveraging Belady’s

algorithm for improved cache replacement. In Proceedings of the ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA’16). 78–89.

[19] Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C Steely Jr, and Joel Emer. 2010.

Achieving non-inclusive cache performance with inclusive caches: Temporal

locality aware (tla) cache management policies. In Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-43). 151–162.

[20] Aamer Jaleel, Joseph Nuzman, Adrian Moga, Simon C Steely, and Joel Emer. 2015.

High Performing Cache Hierarchies for Server Workloads: Relaxing Inclusion to

Capture the Latency Benefits of Exclusive caches. In High Performance Computer

Architecture (HPCA), 2015 IEEE 21st International Symposium on. 343–353.

[21] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. 2010. High

Performance Cache Replacement Using Re-reference Interval Prediction (RRIP).

In Proceedings of the 37th Annual International Symposium on Computer Architec-

ture (ISCA ’10). 60–71.

https://www.anandtech.com/show/11464/intel-announces-skylakex-/%20bringing-18core-hcc-silicon-to-consumers-for-1999/3
https://www.anandtech.com/show/11464/intel-announces-skylakex-/%20bringing-18core-hcc-silicon-to-consumers-for-1999/3
https://www.anandtech.com/show/11464/intel-announces-skylakex-/%20bringing-18core-hcc-silicon-to-consumers-for-1999/3
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf
http://crc2.ece.tamu.edu/
http://comparch-conf.gatech.edu/dpc2
http://comparch-conf.gatech.edu/dpc2
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.220-zEC12-Processor-Sonnelitter-IBM-v5.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.220-zEC12-Processor-Sonnelitter-IBM-v5.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.220-zEC12-Processor-Sonnelitter-IBM-v5.pdf
https://www.cs.rice.edu/~johnmc/comp522/lecture-notes/COMP522-2016-Lecture7-Power7.pdf
https://www.cs.rice.edu/~johnmc/comp522/lecture-notes/COMP522-2016-Lecture7-Power7.pdf
http://ark.intel.com/products/27426/Intel-Pentium-4-Processor-1_70-GHz-256K-Cache-400-MHz-FSB
http://ark.intel.com/products/27426/Intel-Pentium-4-Processor-1_70-GHz-256K-Cache-400-MHz-FSB
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://pages.cs.wisc.edu/~david/courses/cs758/Fall2016/handouts/restricted/Knights-landing.pdf
http://pages.cs.wisc.edu/~david/courses/cs758/Fall2016/handouts/restricted/Knights-landing.pdf

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)

ISSN (Online): 2319-6564 and Website: www.ijesonline.com

202

[22] Daniel A Jiménez. 2013. Insertion and Promotion for Tree-based PseudoLRU

Last-Level Caches. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-46). 284–296.

[23] Norman P Jouppi. 1990. Improving Direct-mapped Cache Performance by the

Addition of a Small Fully-associative Cache and Prefetch Buffers. In Proceedings

of the 17th Annual International Symposium on Computer Architecture (ISCA’90) .

364–373.

[24] Norman P Jouppi and Steven JE Wilton. 1994. Tradeoffs in two-level on-chip

caching. In Proceedings the 21st Annual International Symposium on Computer

Architecture (ISCA’94). 34–45.

[25] Samira M Khan, Yingying Tian, and Daniel A Jiménez. 2010. Dead Block Replace-

ment and Bypass with a Sampling Predictor. In Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-43). 175–186.

[26] Jinchun Kim, Elvira Teran, Paul V Gratz, Daniel A Jiménez, Seth H Pugsley, and

Chris Wilkerson. 2017. Kill the Program Counter: Reconstructing Program Be-

havior in the Processor Cache Hierarchy. In Proceedings of the 22nd International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XXII). 737–749.

[27] Pierre Michaud. 2016. Best-offset Hardware Prefetching. In Proceedings of the

22nd IEEE International Symposium on High Performance Computer Architecture

(HPCA-22). 469–480.

[28] Vivek Seshadri, Onur Mutlu, Michael A Kozuch, and Todd C Mowry. 2012. The

evicted-address filter: A unified mechanism to address both cache pollution

and thrashing. In Proceedings of the 21st International Conference on Parallel

Architectures and Compilation Techniques (PACT’12). 355–366.

[29] Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B Gibbons,

Michael A Kozuch, and Todd C Mowry. 2015. Mitigating prefetcher-caused pol-

lution using informed caching policies for prefetched blocks. ACM Transactions

on Architecture and Code Optimization 11, 4 (2015), 51.

[30] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. 1999. EELRU: Simple and Ef-

fective Adaptive Page Replacement. In ACM SIGMETRICS Performance Evaluation

Review, Vol. 27. 122–133.
[31] Alan Jay Smith. 1978. Sequential Program Prefetching in Memory Hierarchies.

Computer 11, 12 (1978), 7–21.

[32] SPEC. 2017. ISPEC CPU2017 benchmark suite. https://www.spec.org/cpu2017.

(2017). Accessed: 2017-11-22.

[33] Elvira Teran, Yingying Tian, Zhe Wang, Daniel A Jiménez, et al. 2016. Min-

imal Disturbance Placement and Promotion. In Proceedings of the 22nd IEEE

International Symposium on High Performance Computer Architecture (HPCA-22).

201–211.

[34] Elvira Teran, Zhe Wang, and Daniel A Jiménez. 2016. Perceptron Learning

for Reuse Prediction. In Proceedings of the 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-49). 1–12.

[35] Javier Vera, Francisco J Cazorla, Alex Pajuelo, Oliverio J Santana, Enrique Fernan-

dez, and Mateo Valero. 2007. Fame: Fairly measuring multithreaded architectures.

In Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques (PACT’07). 305–316.

[36] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C

Steely Jr, and Joel Emer. 2011. SHiP: Signature-based Hit Predictor for High

Performance Caching. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-44). 430–441.

[37] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C Steely Jr, and Joel

Emer. 2011. PACMan: prefetch-aware cache management for high performance

caching. In Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-44). 442–453.

[38] William A Wulf and Sally A McKee. 1995. Hitting the Memory Wall: Implications

of the Obvious. ACM SIGARCH Computer Architecture News 23, 1 (1995), 20–24.

[39] Li Zhao, Ravi Iyer, Srihari Makineni, Don Newell, and Liqun Cheng. 2010. NCID:

a non-inclusive cache, inclusive directory architecture for flexible and efficient

cache hierarchies. In Proceedings of the 7th ACM international conference on

Computing Frontiers (CF’10). 121–130.

[40] Ying Zheng, Brian T. Davis, and Matthew Jordan. 2004. Performance Evaluation

of Exclusive Cache Hierarchies. In Proceedings of the 2004 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS’04) . 89–96.

https://www.spec.org/cpu2017

