

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

128

SpongeDirectory: Number of co Memristors and Flexible Sparse
Directories

Dr. B.Purna Satyanarayana1*, Dr. Chinmay R. Pattanaik2

1* Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

bpurnasatyanarayana@thenalanda.com*, chinmayaranjan@thenalanda.com

ABSTRACT
In many-core systems, cache-coherent shared memory

is essential for programmability. Many directory-based
methods have been put forth, however due to dynamic,
non-uniform sharing, they are always energy,
performance, or storage space inefficient.

A sparse directory structure that makes use of multi-
level memristory technology is called SpongeDirectory,
which we introduce. By expanding the number of bits held
on a single memristor device, SpongeDirectory grows
directory storage in-place when necessary, exchanging
latency and energy for storage. We investigate several
SpongeDirectory setups and discover that the most
competitive option uses memristors with a provisioning
rate of 0.5x and is designed to use little energy. With 18
percent less storage space and 8 percent reduced energy
usage, this ideal SpongeDirectory setup performs on par
with a traditional sparse directory.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles; B.7.1
[Integrated Circuits]: Types and Design Styles

Keywords
Sparse Directories; Multi-Level Memristors

1. INTRODUCTION
As the number of processor cores increases, multi-/many-

core chips tend to favor directory- over bus-based snooping
coherence due to bandwidth needs. Simple directory
schemes based on sharer vectors are not scalable, however,
because storage increases super-linearly with the number
of cores. A scalable, efficient directory scheme is needed
for future extreme-scale many-core system. Many directory

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PACT’14, August 24–27, 2014, Edmonton, AB, Canada.

Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.

http://dx.doi.org/10.1145/2628071.2628081.

schemes (e.g., [14][42][44][20][30]) have been proposed to
reduce the storage requirements at the cost of energy,
latency or complexity. For example, duplicate-tag [14]
and tagless [42] directories provide scalable performance
and area, but they are not energy efficient. The recently
proposed SCD [30] scheme is scalable, but only if it is
coupled with a complex ZCache architecture[29].

Requirements for directory coherence storage are quite
different among different applications. Some applications
have a large number of directory entries, but most directory
entries have very few sharers, whereas others have fewer
directory entries, with more sharers per entry. Using
conventional SRAMs, it is quite complex to provide the
flexibility for both situations while keeping overall storage
overhead low [11][29].

In this paper, we seek to use emerging memristor
technologies to solve this problem. Memristors offer
promising characteristics for storage devices—high density,
non volatile, low-energy electrical switching, CMOS
compatibility [36], and most importantly for this work,
the ability to dynamically trade off read and write latency
for storage density [3]. This variable-precision storage,
projected to be up to seven bits[3] in a single memristor
bit, is a perfect match to meet the requirements of different
directory storage requirements in different situations. The
extra memristors may be used either for more sharers in an
entry or for more entries in a set, allowing for flexible needs
within and across applications.

This paper makes the following contributions:

• Provide a model projected from empirical data for
latency and energy requirements for memristors.

• Introduce an encoding scheme that requires only one
memristor bit to store the number of levels being used.

• Design and evaluate a coherence directory with
memristors that, with the optimized configuration,
saves 18x storage, results in negligible degeneration

on overall system performance, and consumes 8× less
energy than a conventional directory.

The rest of the paper is organized as follows. We first give
a background on memristors and cache coherence directory
storage schemes in Section 2. Section 3 presents our Sponge
Directory scheme. We then present our methodology and
results in Sections 4 and 5. We present a more thorough
related work section in Section 6, followed by our conclusions
in Section 7.

mailto:permissions@acm.org
http://dx.doi.org/10.1145/2628071.2628081

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

129

Current Resistance

Three‐Level
Read

Single‐Level

Two‐Level

Three‐Level

At time point ReadLatency(1):
Level‐1 bit is determined. Current value is 1XX.

At time point ReadLatency(2):

Level‐2 bit is determined. Current value is 10X.

At time point ReadLatency(3):
Level‐3 bit is determined. Current value is 101.

Figure 1: Multi-level memristor cell, and the step-wise manner of a multi-level memristor read. The same
resistance can be read as different numbers of bits, and the most significant bits are read first.

2. BACKGROUND
The SpongeDirectory is built on two bodies of work

– future multi-level memristor technologies and on-chip
cache coherence directories. Here, we present the relevant
information in those areas.

 Multi-Level Memristor Storage vs Latency
Memristors [39][40] are in the family of resistive memories.

Others include Phase Change Memories (PCM) and Spin-
Transfer Torque RAM (STTRAM). Memristors, when used
as a direct replacement for SRAM, are projected to be
significantly more dense than conventional SRAM. Because
memristors are analog devices, they can be used for analog
computations or, depending on the precision of the storage,
storing multiple digital bits in one cell [3]. We propose to
exploit this latter characteristic (at the expense of energy
and latency).

A memristor cell [39] is a device whose resistance can
be changed in a wide range. Holding a voltage above
a specific threshold for enough time (i.e., a write pulse)
changes the resistance of the memristor cell. An Analog-
to-Digital Circuit (ADC) reads the resistance as a digital
value. Depending on the ADC setting, the same resistance of
a memristor cell could be interpreted as a different number
of bits [13][38]. Figure 1 shows that the same resistance
can be interpreted as b’1 when the ADC is using one-level
accuracy, and as b’10 and b’101, respectively, when the ADC
is using two-level and three-level accuracy. Alibart et al. [3]
recently showed that a single memristor cell can be used to
store up to seven bits of data.

The higher precision of the memristor operations comes
at a cost in latency and energy. Here we describe in detail
the characteristics of multi-level memristor operations:

 Multi-level Memristor Reads

As the number of bits being stored in a single memristor
increases, the ADC must distinguish between more values,
and the range of resistive values mapping to a single digital
value decreases. Therefore, more precise read operations
require longer latency.

Another interesting and important characteristic of multi-
level memristor read operation is its asymmetry to different
bits. Because of this, we will refer to the different bits stored
in a single memristor as being stored in different levels.
Because the most significant bit requires much less precision
to be read out than the least significant bit, we refer to the
most significant bit as being the shallowest bit, or in the
shallowest level, and the least significant bit is the deepest
bit, or in the deepest level.

In this paper, we assume a successive approximation ADC
[6] which allows us to read out multi-level memristor data
in a step-wise manner. If ReadLatency(n) is the time
required to read the nth most significant bit, a three-level
read operation will be complete at ReadLatency(3). As
Figure 1 shows, however, the data in the first level (i.e.,
the most significant bit or shallowest level) can be read out
by ReadLatency(1), and the data in the second level can be
used by ReadLatency(2).

The important result is that if we only need to read out
the most significant bit of a multi-level memristor, we pay
the latency and energy of a less precise memristor.

 Multi-level Memristor Writes

In order to write very precise resistance values, multi-level
memristors use an iterative write method [3]. That is, a
multi-level write is composed of multiple iterations, each
iteration consisting of a multi-level read followed by a write
pulse.

As we will see in Section 4, a multi-level write can have
very high latency (up to hundreds or even thousands of
nanoseconds). Fortunately, the operation can be interrupted
between iterations to service more critical operations (e.g. a
read).

In conclusion, multi-level memristor operations trade
operation latency and energy for storage density. Using
multiple levels incurs high latencies and energies, but
we are able to mitigate these effects with careful data
organization and scheduling. The asymmetry in read
latency for different levels allows us to access some data
at low latency and energy. Finally, while the write latency
appears unacceptably high, we can suspend the write while
performing more time-critical operations.

 On-chip Coherence Directories
There are several baseline directory architectures used

for on-chip coherence, such as sparse directory, duplicate
tag directory, and in-cache directory. A duplicate tag
directory has been shown not to be energy scalable (since
its associativity is linear with number of cores). An in-
cache directory requires a special inclusive shared Last
Level Cache hierarchy. Therefore, among the possible
baseline directory architectures, the sparse directory [16] is
general purpose and requires the least energy. Recently,
a number of proposals (e.g., [12][30][9][4][11]) work on
improving the scalability of sparse directories, each with its
own trade-off among complexity, storage and performance.
Our scalable design provides a new design point in these
trade-offs. Specifically, with the help of emerging multi-
level memristors, our technique has the lowest storage

Low Resistance Range High

1

1 0

1 0 1 0 0 0

0 0

0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1

0 1 1 1

0

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

130

GETX (Addr0)
Invalidate (Addr0)

Directory
Slice M‐1

Hit Directory Block

Private
Caches

Processor
Core N‐1

Directory
Slice M‐2

hit

Directory
Slice 1

Directory
Slice 0

Private
Caches

Processor
Core 0

Private
Caches

Processor

Core N‐2
Private
Caches

Processor
Core 1

requirement among all the proposal.s In addition, it as a
gentle degradation in performance for rare cases.

Figure 2 provides a logical view of on-chip sparse directory
coherence, consisting of a logical uniform directory module
and multiple processor cores along with their private caches.
To avoid directory and network hot-spotting, the directory
module is often divided into multiple directory slices. Each
directory slice contains multiple directory entries, typically
organized in a set-associative manner, just like caches. Each
directory entry usually contains at least the following fields:
address tag (address of corresponding memory block), state
(three states in a conventional MESI protocol) and sharers
(which cores’ caches currently contain the memory block).

If a processor core asks for a memory block which does
not exist on its private caches, it will issue a coherence
request (e.g. GETX in Figure 2) to the sparse directory. The
sparse directory then performs corresponding actions (e.g.,

Address Tag:
Addr0

State:
Shared

Sharers:
Cores 1, N‐2, N‐1

Figure 2: An example of a sparse directory scheme
invalidating all the cached copies of the memory block). The
disadvantage of the original sparse directory is its storage
requirement, since it must hold all information perfectly.
Depending on who is sharing what, there are two sources of
storage inefficiency:

• Storing sharer information in an entry: In a sharer-
vector form, the storage of such information is linear
with the number of cores and thus not scalable.

• Slice-level and set-level non-uniformity: In

theory the number of valid directory entries should
never exceed the number of private cache entries.
However, due to the set-level and slice-level non-
uniformity of sparse directory, the sparse directory

often needs to over-provision (usually 2× of the
number of private cache entries [8]) the directory
entries. The way to solve such a problem usually
lies in increasing the actual associativity of the sparse
directory (e.g., Cuckoo directory [12]).

In this paper we analyze a conventional 256-core sparse di-
rectory (i.e., the ConvDir described in Section 4), to shed
light on designing low-cost and efficient many-core coher-
ence directory using multi-level memristors. This analysis is
analyzes both spatial and temporal behavior.

 Directory Design: Timing

In order to exploit the fact that multi-level memristor
reads are asymmetric, we need to analyze the timing
of traditional conventional sparse directories to determine
which items are both commonly accessed and on the critical
path, and thus should be in the shallowest levels of the
memristors. Figure 3 presents detailed flow graphs of
GETX/GETS operations in a sparse directory. Figure 4
shows the number of directory requests with respect to L1
cache and L2 cache requests. Using this information, we
make the following set of observations that will guide our
design:

• For a typical MESI-based directory coherence system,
there are four types directory requests: Exclusive Read
(i.e., GETX), Shared Read (i.e.,GETS), Exclusive
Write-back (i.e.,PUTX) and Shared Write-back (i.e.,
PUTS). While GETX and GETS are on the critical
path of the execution, PUTX and PUTS are not.
Therefore, we should optimize the latency of GETX
and GETS operations.

used in a multi-/many-core processor to track private
cache coherence information. A sparse directory uses set-
associative cache-like structures and is is distributed into

slices (M slices in this figure).

• From Figure 3, the read operations (in red) are on

the critical path of the directory requests, but the
write operations (in blue) are not on the critical path.
Therefore, low read latency is more important than
write latency.

• From Figure 3, for all reads, the sparse directory needs
to read the tag and state information of all entries
in corresponding directory set. On a hit, it usually
(cases 1 and 3) needs to read only one sharer from the
hit directory’s entry. From Figure 4, Case 2 happens
relatively rarely. Therefore, low read latency of tags,
states and one sharer is more important than read
latency of additional sharers

• From Figure 4, the number of directory requests are on
average over 1144× and 24.9× less than the number of
L1 cache requests and L2 cache requests, respectively.
According to Amdahl’s law, a moderate degradation
of directory performance is unlikely to affect overall
system performance.

 Directory Design: Spatial

For each evaluated benchmark, we take a snapshot
when the total number of sharers in the directory entries
is the largest. Figure 5 is a histogram of how many
directory entries have each number of sharers. We can
see that benchmarks vary widely in their maximum sharing
requirements.

• Some benchmarks (e.g., radix) have a large number of
directory entries, but almost all the directory entries
are owned by only one sharer. These benchmarks
require more directory entries, but seldom require more
sharer storage for each directory entry.

• Some other benchmarks (e.g., barnes and raytrace)
have significantly fewer directory entries, but some
of the directory entries have many sharers. These
benchmarks require fewer directory entries, but some
of the directories require more storage for sharers.

Therefore, our proposed directory scheme should be flexible
enough to handle both situations - when many directory
entries are required and when many sharers are required for
some directory entries.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

131

Wait for the confirmation
Message from the requestor

core.

Update the directory entry.
[Add one sharer (requestor)

to the sharer‐list of the
directory entry]

Finished

Finished

Update the directory entry.
[Add one sharer (requestor) to the

sharer‐list of the directory entry, change
the tag, and remove all previous sharers]

Case 1: A GETS request,
hit with Shared state

Case 2: A GETX request,
hit with Shared state

 Confirmation
Response

Figure 3: Behaviors of GETX and GETS requests in a conventional sparse directory using MESI protocol showing reads (red)
and writes (blue). Goal: reduce latency for common operations on critical path. We see that: (1) Only reads are on the
critical path. (2) All reads require state and tag, and most require one sharer. (3) Relatively few operations require reading
multiple sharers.

Figure 4: Number and type of memory accesses
normalized to total directory accesses. Directory
accesses are relatively infrequent, therefore latency tolerant.

Figure 5: Number of directory entries with X sharers,
normalized to the number of cache blocks showing
variance in need for entries (radix) and sharers (raytrace).

3. SPONGEDIRECTORY
In this section, based on the analysis of both multi-level

memristors and sparse directories in Section 2, we propose
the detailed architecture of SpongeDirectory. Without the
loss of generality, our proposed architecture is for a 256-core
system (as described in Section 4).

The storage of each SpongeDirectory slice, like a normal
sparse directory slice, is an N-way set-associative memory.
Each set has N blocks in it. The difference is that the
memory is made of multi-level memristor RAMs, therefore
each block can be configured individually with a number
of levels. We call each level of a SpongeDirectory block a
SpongeDirectory item.

 Identifying the Level of a Block
The SpongeDirectory must be able to identify the number

of items in each block. Intuitively, we need to store item
count information of all SpongeDirectory blocks into a small
peripheral RAM. However, this will complicate the design of
SpongeDirectory. Here we propose a low-cost but effective
mechanism, a usage bit, that encodes the number of items
stored in a single memristor bit whose value is read only to
the deepest filled item.

Each SpongeDirectory block has one usage bit. If the
correspondent item is the deepest valid item of the block
(e.g., the Level 3 item in Figure 1), its usage bit is 0;
otherwise, it is 1. Therefore, A multi-level memristor read
can stop once it reads a usage bit with value 0.

 SpongeDirectory Entry Formats
A directory entry refers to the directory information of a

cacheline block. There are two types of items — head items
and body items. A head item is either invalid or contains the
tag, state, and at least one sharer. A new directory entry
needs only one head item, since it only needs its tag, address,
and the one sharer that brought it in. As more cores share
the cacheline, body items are added to store the additional
sharers.

We use two different directory entry formats for storing
sharer information. First, the sharer pointer scheme stores
information only for sharers, allowing the number of items
to grow as the number of sharers grows, but requiring 8
bits per sharer. Second, the sharer vector scheme uses only
1 bit per sharer, but requires space for all cores (not just
those sharing it). This is efficient for many sharers. Similar
to prior work[30], each entry may be configured as either

GETX
Request

Check if there is a hit in sparse
directory.

[Read the state and tag of all
the directory entries in

corresponding set]
Critical

GETS
Request

Check if there is a hit in sparse
directory.

[Read the state and tag of all
the directory entries in

corresponding set]
Critical

Path

Invalidation
Requests

Hit (in Sha red state)

Send invalidation requests to
all the sharer cores.

[Read all sharers from the hit
directory entry]

Invalidation
Responses

GETX

Response

Send GETX response with data
to the requestor core.

Wait for the invalidation
responses from the sharer

core.

Case 3: A GETX/S request,
hit with Exclusive/Modified state

GETX/S
Request

Check if there is a hit in sparse
directory.

[Read the state and tag of all
the directory entries in

corresponding set]
Critical

Path Hit (in Exclusive/ Modified state)

Flush
Request

Flush

Response

GETX/S

Response

Confirmation
Response

Finished

Wait for the confirmation
Message from the requestor

core.

Wait for the flush response
from the owner core.

Send flush request to the
owner core.

[Read the only one sharer
(i.e., the owner) from the hit

directory entry]

Update the directory entry.
[Add one sharer (requestor) to the

sharer‐list of the directory entry, change
the tag if needed, and remove the

previous sharer if needed]

Send GETX/S response with
data to the requestor core.

Path

Forward

GETS Request

Hit (in Sha red state)

Forward the request to a
sharer core.

[Read one sharer from the hit
directory entry]

Confirmation
Response

Wait for the confirmation
Message from the requestor

core.

Case 4: A GETX/S request,
miss

GETX/S
Request

Check if there is a hit in sparse
directory.

[Read the state and tag of all
the directory entries in

corresponding set]
Critical

Path

GETX/S
Response

Mi ss

Send GETX/S response with
data (got from off‐chip

memory) to the requestor
core.

 Confirmation
Response

Finished

Insert the directory entry.
[Write the whole directory
entry to an empty block]

Wait for the confirmation
message from the requestor

core.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

132

Usage bit
(1 bit)

Item type (2 bits)
[Pointer Body,

code 10]

Head item (3 bits)
[current value: 001]

Seven sharer pointers
(8 * 7 = 56 bits)

Number of valid
pointers (3 bits)

Precision Level 1 (001)
Invalid Item

Precision Level 1 (001)

Pointer Head Item

Precision Level 3 (011)

Pointer Body Item

Precision Level 5 (101)

Pointer Body Item

Precision Level 1 (001)

Vector Head Item

Precision Level 2 (010)

Vector Body Item

Four Item types: Invalid (code 00), Pointer Head (code 01), Pointer Body (code 10) and Vector (code 11)

Usage bit
(1 bit)

Item type (2 bits)
[Invalid,
code 00]

Unused
(54 bits)

(a) An invalid directory item

Usage bit
(1 bit)

Item type (2 bits)
[Pointer Head,

code 01]

State
(3 bits)

Number of valid
pointers (3 bits)

Address tag
(40 bits)

Two sharer pointers
(8*2 = 16 bits)

Usage bit

(1 bit)

Item type (2 bits)
[Pointer Body,

code 10]

Head item (3 bits)
[current value: 001]

Number of valid
pointers (3 bits)

Seven sharer pointers
(8 * 7 = 56 bits)

(b) Directory items which form a sharer pointer directory entry

Usage bit
(1 bit)

Item type (2 bits)
[Vector, code 11]

State
(3 bits)

Unused
(3 bits)

Address tag
(40 bits)

One sharer pointer
(8 bits)

Unused
(8 bits)

Precision Level 5 (101)

Vector Body Item

(c) Directory items which form a bit vector directory entry

Figure 6: The entry formats of SpongeDirectory

scheme to obtain the advantage of both sharer pointer and
sharer vector schemes.

Figure 6 shows the different formats and how they are
utilized with different scenarios.

• Invalid Items. Figure 6(a) shows an invalid item. This
is only used when the block contains no items.

• Sharer Pointer Head and Body Items. Figure 6(b)
shows an example of a multi-item directory entry using

Level 1

Level 2

Level 3

Level 4

Level 5

Block Way‐0 Block Way‐1 Block Way‐2 Block Way‐3

the sharer pointer format. The pointer head item
contains the address tag, state and two sharer pointers.
The two pointer body items contain all other sharer

Pointer Head Item

Pointer Body Item

Vector Head Item

Vector Body Item

Invalid Item

Unused Item

pointers. Because multiple directory entries can be
mapped to the same block, each body item has a
pointer to its head item.

• Sharer Vector Head and Body Items: Figure 6(c) shows
an example of a directory entry using the sharer vector
format. A sharer vector directory entry has a fixed
storage requirement for sharer information (in our
case, 256 bits, requiring four items). With its head
item, a sharer vector directory entry requires all five
items of a block. To ensure fast directory responses, a
sharer vector head item preserves a sharer pointer.

Figure 7 shows how items would be stored in the same
block. We add a few restrictions to reduce read latency:

• A single block may contain several directory entries in
sharer pointer format.

• One block can hold up to five items (out of a possible
seven [3]).

• Head items are stored in the shallowest levels for fast
completions of cases 1, 3, and 4 in Figure 3.

We also add restrictions to simplify the design:

• All items for the same directory entry must reside in
the same block to simplify accesses.

• A directory entry in sharer vector format uses the
entire block.

Figure 7: A snapshot of a 4-way SpongeDirectory set. Items
with the same color belong to the same directory entry.

 Minimizing Write Energy
As will be shown in Section 4.2, multi-level memristor

writes require significantly more energy than other
operations. In addition, it is often the case that just a few
bits of an item, and therefore block, need to be changed.
In order to save energy consumption, SpongeDirectory only
writes the memristor bits of a block that need to change.

• Inserting or removing items that cross the
threshold of the number sharers in an item in sharer
pointer format requires the entire block to be written.

• Adding a sharer within an item in sharer
pointer format requires only modification of the
target sharer pointer and the pointer count field..

• Removing a sharer within an item in sharer
pointer format may leave a hole, so a sharer pointer
may need to be moved. Therefore, the maximum is
two sharer pointers and the pointer count field..

• Adding a sharer in sharer vector format requires
modification of only a single bit.

• Removing a sharer in sharer vector format modifies
only a single bit unless the removed sharer is also in

Bit vector [192:255]
Usage bit

(1 bit)

Bit vector [0:63]
Usage bit

(1 bit)

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

133

the sharer pointer field of the head item. In this case,
we also need to modify the sharer pointer field.

• Changing directory entry format requires the
entire block to be written (see below).

 Changing Directory Entry Format
Every directory entry is in sharer pointer format (with

one head item and no body items) when inserted into the
directory, and sharer pointer items are added and removed
as needed. When the number of sharers surpasses a
threshold, SpongeDirectory will upgrade a sharer pointer
directory entry into sharer vector format. All other directory
entries sharing the same block are evicted, sharer pointers
are translated to vector locations, and sharer vector items
are written to the upgraded directory entry.

Ideally, as the number of sharers falls below another
threshold, a downgrade operation should occur to switch
the sharer vector directory entry back into sharer pointer
format. The directory could toggle across the threshold,
so we do not downgrade at this time. When a GETX
occurs, the resulting directory entry has only one sharer (the
requester), so compressing the entry to a single item rather
than the entire block is worthwhile, so we only downgrade a
sharer vector directory entry at this time.

 Buffering Recently Finished Requests
There are still two challenges for SpongeDirectory scheme

in some applications: limited write durability and long write
latency. As we will show later, if a very small number of
blocks are written many times, as in fluidanimate, this will
hurt the lifetime of that block, as well as suffer delays due
to the long write latencies. Therefore, we propose a buffer
that holds the most recently finished directory requests to
capture subsequent operations to those entries.

4. METHODOLOGY
In this section, we describe the two main aspects to the

experiments. First, we describe the different configurations
we evaluated. Second, we describe the simulations and
models we used to obtain our numerical results.

 Directory Configurations
Our baseline is a conventional sparse directory architec-

ture. In addition, we calculate the storage requirements
of the SCD architecture. For the SpongeDirectory config-
urations, we have several configurations that vary the size,
memristor type, organization, and buffering in order to eval-
uate the effectiveness of our design decisions. Table 2 sum-
marizes the storage requirements of the three basic sizes.
All of the variations only change one attribute as compared
with SpongeDirMid, so we describe only the difference be-
tween SpongeDirMid and that configuration.

• ConvDir is a conventional sparse directory architec-
ture using a sharer-vector scheme with a 2× provision-
ing rate.

• SpongeDirMid uses energy-optimized memristors
with a 0.5× provisioning rate and an 8-entry buffer
of the most recently completed requests.

• SpongeDirSmall uses a 0.25× provisioning rate.

• SpongeDirLarge uses a 1× provisioning rate.
• SpongeDirMid-NoBuffer has no buffer of the most

recently completed requests.

• SpongeDirMid-FastMemristor uses latency opti-
mized memristors.

• SpongeDirMid-6Levels uses a narrower format
requiring 57 bits per block instead of 65 bits — each
Pointer Head Item has one sharer pointer instead of
two. This will utilize deeper levels more often.

• SpongeDirMid-SimplePolicy is SpongeDirMid but
does not take advantage of the organization of items
within a block. Although head items are stored in
the shallowest levels, this reads the entire entry before
processing the request.

 Models
For each configuration, we calculate the storage

requirements as well as the read latency, write latency, and
energy. We developed models for memristors projected from
recent experimental data. We used these values as inputs to
our simulation infrastructure.

Simulation.
We implement our simulation platform with the multi-

threaded GRAPHITE simulator [23], based on Pin [5]. As
described in Table 1, we simulate a 256-tile cache coherent

many-core system which is distributed in a 16 × 16 mesh
network-on-chip. Each tile has split 32KB L1 I/D-caches, a
private 512KB L2 cache, and a sparse directory slice.

To take into account the execution time variability of
parallel benchmarks [2], we run each simulation multiple
times and report the average and standard deviation of each
collection of measurements. We evaluate our design using
nine SPLASH-2 benchmarks [35] (barnes, cholesky, fft, lu,
ocean, radix, raytrace, volrend and water) and six PARSEC
benchmarks [7] (blackscholes, bodytrack, canneal, dedup,
ferret and fluidanimate). As shown in Figures 4 & 5, these
benchmarks exhibit a wide variety of directory behaviors.

To reduce simulation time, Graphite [23] uses relaxed
coordination among the threads, and the developers show
that the simulation inaccuracy caused by the approach
is acceptable. However, this means that the requests of
different threads sometimes arrive to a directory slice not
in a time order, making it impossible to model the queuing
delay of different operations. As a result, we first present
the execution time without considering the queuing delay.
We then separately present the memristor operation time
in the busiest directory slice to show when queuing delay is
likely to considerably prolong the execution time.

Storage.
Table 2 shows the storage requirements of the directory

schemes, which is affected by two parameters: (1)storage
of each directory block ; (2)provisioning rate of the sparse
directory scheme, defined as the total number of directory
blocks divided by the total number of cache blocks in all
private caches.

For the first parameter, due to their multiple storage
formats, both SCD and SpongeDirectory require smaller
directory blocks than a conventional sparse directory.

The provisioning rate of a conventional sparse directory

is 2×. Because SCD mimics a much larger associativity
with its Zcache-like infrastructure, it only needs a

provisioning rate of 1×. Each SpongeDirectory block can
be configured to hold multiple directory entries, further

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

134

Table 1: Simulation Parameters

Frequency 1GHz
Processor in-order, x86-64 ISA, IPC equals to 1 except on memory accesses, 64-byte cacheline size
L1 Caches private split 32KB I/D-caches per processor, 4-way, parallel access, 2-cycle latency, 0.82pJ tag

lookup, 88.71pJ data access.
L2 Caches private, 512KB per processor, 8-way, sequential access, 11-cycle latency, 4.62pJ tag access,

74.70pJ data access.
Coherence Protocol MESI protocol, split request-response, with forward, sequential consistency.
Directories Critical directory access latency = data path latency (5 cycles) + critical RAM operation latency

+ network/memory latency.
ConvDir: RAM read/write latency: 1 cycle (1ns); buffering 8 most recent requests.
SpongeDirectories: by default, buffering 8 most recent requests, using energy-optimized
memristors, head item shallower policy and 5-level memristors, a sharer pointer format directory
entry having at most three items.

Network 16 × 16 MESH network, 4 cycles per hop. 1 process/hierarchy per tile.
Memories 350 cycle latency.

Table 2: Compared directory architectures. SpongeDirectory formats in Figure 6.

 Directory type RAM
type

Block
organization

Prov.
rate

Directory RAM storage per tile
(caches have 624.375 KB RAM per tile)

SpongeDirSmall SpongeDirectory memristor 4-way,
512 sets

0.25× 65 bits per block (5 levels/bit)
->∼16KB (2.56% cache)

SpongeDirMid
(default)

SpongeDirectory memristor 4-way,
1024 sets

0.5× 65 bits per block (5 levels/bit)
->∼32KB (5.13% cache)

SpongeDirLarge SpongeDirectory memristor 4-way,
2048 sets

1.0× 65 bits per block (5 levels/bit)
->∼64KB (10.25% cache)

SpongeDirMid
-6Levels

SpongeDirectory memristor 4-way,
1024 sets

0.5× 57 bits per block (6 levels/bit)
->∼28KB (4.48% cache)

ConvDir Conventional
Sparse Directory

SRAM 4-way,
4096 sets

2.0× 307 bits / block: 3-bit state, 40-bit tag, 8-bit
sharer pointer, 256-bit vector
-> 614 KB per tile (98.3% of cache).

SCD SCD [30] SRAM Zcache [29],
4 ways,
2048 sets

1.0× 71 bits per block: 3-bit state, 40-bit tag,
2-bit type, 26-bit sharer info field
-> 71 KB per tile (11.37% of cache).

Table 3: Energy and Latencies of the modeled directory storage.

Architecture Size Storage type 1-level read latency 1-level read energy Area
latency-
optimized

energy-
optimized

latency-
optimized

energy-
optimized

latency-
optimized

energy-
optimized

SpongeDirSmall 16KB memristor 1.651ns 4.763ns 41.464pJ 3.172pJ
2

11000.6um
2

3563.8um
SpongeDirMid 32KB memristor 1.698ns 5.463ns 41.775pJ 4.008pJ

2
11464.8um

2
6363.0um

SpongeDirLarge 64KB memristor 1.809ns 6.739ns 42.397pJ 4.167pJ
2

12411.4um
2

8011.9um
SpongeDirMid
-6Levels

28KB memristor 1.670ns 5.439ns 36.582pJ 3.341pJ 10404.7um2 5671.0um2

ConvDir 614KB SRAM-based
4-way cache

< 1.000ns tag: 11.58pJ
data: 74.70pJ

2
968655um

Figure 8: The latency and energy consumption of 32KB multi-level memristor RAMs used in SpongeDirMid.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

135

ReadLatency(n) = ⌈ReadLatency(1) ∗ ExpoBasen−1

⌉ (1)

level operations on 32KB memristor RAMs (with Latency-
Optimized or Energy-Optimized configurations).

W riteLatency(n) = ⌈(ReadLatency(n) + W ritePulseLat) ∗ n⌉
(2)

ReadEnergy(n) ≈ ReadEnergy(1) ∗ ExpoBasen−1 (3)

W riteEnergy(n) ≈ ReadEnergy(n) ∗ n (4)

reducing its provisioning rate. We evaluated three sizes of

SpongeDirectories — 0.25×, 0.5×, and 1×.
In conclusion, SpongeDirectory has smallest because it

utilizes both a compact directory block format as well as
a low provisioning rate. This results in SpongeDirMid (our
default SpongeDirectory configuration) requiring 1/18th of
the storage of a conventional sparse directory and less than
half of SCD.

Memristor and SRAM-Cache Modeling.
For the detailed modeling of memristors, we use nvsim

[10] to obtain the read latency and energy of single-level
memristor RAMs under at 22nm process. Cacti 6.5 is used
to obtain energy characteristics of SRAM structures. Prior
work [37] demonstrated that in designing the memristor-
based RAM, there is a trade off between latency, energy
and area. We explore two design points: Latency-Optimized
and Energy-Optimized.

As Table 3 shows, memristors in the Latency-Optimized
configuration are almost twice as fast as the Energy-
Optimized configuration, but they consume almost 10x the
energy and require more area. In addition, we see that
for the Energy-Optimized configuration, all SpongeDirectory
configurations consume substantially less energy than a
conventional directory when accessing the lowest level.

Previous work on multi-level PCM reading technology [21]
shows that the read latency increases exponentially with
the number of bits stored in the PCM cell. For a multi-
level memristor, we model the same read latency trend—
Equation 1 shows how the latency is computed in a multi-
level read. ReadLatency(n) refers to the latency of an n-
level read. ExpoBase refers to the exponential base of the
modeled multi-level memristor technique.

As mentioned in Section 2.1.2, a multi-level write
is composed of multiple iterations, with each iteration
consisting of a multi-level read followed by a write pulse.
Alibart et al. [3] show that, for a multi-level write, the
number of iterations grows linearly with the number of write
levels. Equation 2 reflects this curve. ReadLatency(n) refers
to the latency of an n-level read, and WritePulseLatency
refers to the latency of a write pulse.

A write pulse consumes trivial energy compared to a read
pulse [32], so we make an approximation that the energy
consumption of a memristor operation equals the energy
consumption of its read sub-operations. Since the power
consumption of the read operation is constant (because the
read voltage is constant), we obtain Equations 3 & 4 for
energy consumption of multi-level read/write operations.

For ExpoBase, we use the empirical number 2.1, which
is derived from Alibart et al.’s work [3]. Memristor write
pulses can be less than one nanosecond [32], therefore we

assign W ritePulseLatency = 1ns in Equation 2. Figure
8 shows the latency and energy consumption of multi-

5. RESULTS
In this section, we present the evaluation of SpongeDi-

rectory in terms of eviction rate, critical directory access
latency, overall performance, directory energy consumption
and lifetime. For clarity, in each graph, we remove any vari-
ations whose results are nearly identical to SpongeDirMid.

 Eviction Rate
Eviction rate is the most straight-forward metric for

evaluating the effectiveness of a sparse directory scheme.
Given a particular configuration of the directory, evictions
occur when there is no place in the desired set to place a
new entry.

We can see from Figure 9 that, even with a provisioning

rate of only 0.25×–1×, SpongeDirectory has a low eviction
rate (on average all less than 1%). Evictions occur in
SpongeDirectory for three reasons: format upgrades, non-
uniform accesses, and lack of capacity.

When SpongeDirectory upgrades directory entries from
the sharer pointer format to the sharer vector format, all
other entries in the same block are evicted. These evictions
could be reinstated at the cost of extra complexity for
upgrades. However, given the fact that this occurs rarely
in our experiments, there is little justification to introduce
this complication.

Directory entries are sometimes non-uniformly distributed
[12], leading to evictions in the hotspot directory sets.
The SpongeDirectory gains much more associativity by
increasing the number of levels it uses (at the cost of latency
and energy consumption). For example, SpongeDirSmall
can exhibit a lower eviction rate than ConvDir (canneal
and ferret). As we will see in Section 5.3, this
advantage sometimes helps SpongeDirectory achieve higher
performance than a much larger conventional directory.

While extra levels provides more tolerance in a particular
set than the conventional directory, the overall capacity
of SpongeDirSmall is less than the conventional directory.

0.25× * 5 levels = 1.25×, which is still substantially smaller
than conventional directory’s 2×. Thus, the conventional
directory can hold many more entries, as long as they
are not concentrated in certain sets. This is illustrated
in radix, where SpongeDirSmall experiences an eviction
rate of 7.98% because of insufficient capacity in the hotspot
SpongeDirectory slice.

 Critical Read Operation Latency
As discussed in Section 2.2, the performance of a directory

scheme is dependent on critical reads. In Figure 11, we
present the latency of critical read accesses of different
directory architectures. Compared to a conventional sparse
directory, SpongeDirectories require many more cycles
(on average 7.56 cycles for SpongeDirSmall, 4.44 cycles
for SpongeDirMid and 4.39 cycles for SpongeDirLarge,
compared with 0.58 cycles for ConvDir) to perform critical
read accesses.

This long latency is due to two factors of the memristor
technology. First, as an emerging technology, memristor
devices still have much longer access latency compared
with mature SRAM devices (Table 3). Second, multi-
level memristor operations require more latency. Even with

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

136

Figure 9: Directory Eviction Rate Figure 10: SpongeDirectory Blocks with Different
Items, Normalized to Number of Cache Blocks

Figure 11: Average Latency of Critical Read Operations (cycles)

Figure 12: Normalized Execution Time (without considering directory request queuing)

careful design to reduce accesses to deeper levels, the lower
the provisioning rate, the more often these deeper levels are
used.

As shown in Figure 11, design choices such as provisioning
rate, buffering, which memristors we use, and the
organization policies, affect the critical read latency. Figure
10 shows the most direct reason for rising latency - increased
accesses to deeper levels.

Provisioning Rate affects evictions and how often
deep levels are acessed. Two benchmarks, radix and
dedup, exhibit long critical latency (52.2 and 16.3 cycles
respectively) for SpongeDirSmall due to increased accesses
to deep levels.
Request Buffering helps reduce the critical latency
because part of the requests are bypassed from accessing
memristors. On average, the critical read latency
of SpongeDirMid-NoBuffer is 2.71 cycles longer than
SpongeDirMid.

Memristor Design can choose to optimize for either
latency or energy. Optimizing for latency (SpongeDirMid-

FastMemristor) is 2× faster (on average 1.47 cycles versus
4.44 cycles) than optimizing for energy (SpongeDirMid).

Item Organization Policies were chosen to increase
the number of accesses to lower levels. Not utilizing
this optimization (SpongeDirMid-SimplePolicy) can result
in much longer critical read latency—for cholesky, 18.79
cycles compared with 4.81 cycles.

Narrower format also increases the access to deeper levels,
as shown by SpongeDirMid-6Levels. While it did not greatly

affect the critical read latency, it has a larger effect on the
time when the memristor is busy (see Section 5.3).

 Overall Performance
The overall performance of different schemes is determined

by two factors — critical latency in the RAM discussed in
Section 5.2 and the queuing time to wait for previous direc-
tory operations to finish. As discussed in Section 4, Graphite
cannot model the second phenomena. Therefore, we first
show the overall execution time not taking into account di-
rectory queuing time. We then show the percentage time the
busiest slice was being used and discuss the effect of queuing
time on overall performance.

Execution Time without Queueing Time.
Figure 12 provides a comparison of overall performance

due to read latency between the SpongeDirectory and
conventional sparse directory. This represents two
competing effects - higher evictions in the conventional
sparse directory versus higher read latencies in the
SpongeDirectory.

Overall, SpongeDirectory is competitive despite its lower
provisioning, more compact format (resulting in 18x fewer
bits) and longer memristor access latency.

Closer inspection of the eviction rates and levels
used within SpongeDirectory explain the variance in
the results. Benchmark dedup has a much lower
eviction rate in the SpongeDirectory than the conventional
directory, and, although higher levels are quite often
used, all SpongeDirectory configurations experience a 10%
performance gain.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

137

Figure 13: Percentage time busiest SpongeDirectory slice is serving requests

Figure 14: Percentage of on-chip memory dynamic energy

We observe two cases of obvious slowdown of SpongeDi-

rectories, and we look for the detailed reasons:

• cholesky on SpongeDirMid-SimplePolicy : cholesky
needs much longer critical read latency in the SpongeD-
irMid-SimplePolicy than all other directory architec-
tures. This indicates that careful item organization of
the SpongeDirectory is indeed necessary.

• radix on SpongeDirSmall : radix suffers from both
a high eviction rate and long critical read latency
due to accesses in deep levels. Therefore, we need

more capacity than the 0.25× provisioning rate of
SpongeDirSmall to avoid such pathologically bad
behavior.

Considering Queueing Time.
With the help of suspendable multi-level memristor

writes, long-latency non-critical memristor accesses typically
do not slow down critical directory operations. However,
this is based on the assumption that there is enough time
when the RAM is not performing critical reads to fit in non-
critical, long-latency writes. If the memristor RAM is very
busy, the critical requests might be blocked because the
limited directory processing buffers are all taken by awaiting
non-critical requests.

Figure 13 shows the percentage of memristor access time
in the busiest SpongeDirectory slice. For SpongeDirMid,
the average value is 8.37% (up to 35.1% when running
canneal), which is acceptable. However, several
other SpongeDirectory design choices sometimes cause
unacceptably long memristor operation time :

• No request buffering leads to memristor operation
time in the busiest slice which is longer than
total exection time for fluidanimate, volrend, and
canneal. This would result in a slowdown of at least
1.5x-5.3x.

• Using six levels instead of five levels leads to
memristor operation time in the busiest slice which is
almost same with total exection time for canneal and
volrend, likely slowing down those two applications.

• Small provisioning rate (SpongeDirSmall) leads to
high occupancy in the busiest slice of radix - 61.45%
of overall execution time.

When we consider the overall execution time and time
the busiest slice was being utilized, the reasons for our
default parameters are clear. Although SpongeDirMid-
FastMemristor individual operations are considerably faster
than with SpongeDirMid, this advantage is not reflected
in terms of overall execution, nor an unacceptably large
percentage time the the busiest directory slice was being
used. Therefore, we do not need to use latency-optimized
memristors to maintain competitive performance. In
addition, it is clear that buffering is critical. SpingeDirMid
provides the best trade-off between a low eviction rate, small
storage, and good performance. Finally, a wider format that
uses only 5 levels is worth the small extra area.

 Dynamic Directory Energy Consumption
Figure 14 shows the breakdown of dynamic energy

consumption of different directory schemes. We see that,
on average, all of the SpongeDirectories configurations with
energy-optimized memristors consume less energy than a
conventional directory. SpongeDirMid consumes about half
the energy of a conventional directory. Even SpongeDirMid-
FastMemristor, which consumes by far the most energy,
consumes only slightly more energy than a conventional
directory.

If we compare the these configurations, we see that:

• It is clear that the performance benefit from latency-
optimized memristors is far outweighted by the energy
benefit of energy-optimized menristors.

• Request buffering further reduces the energy consump-
tion. When executing ocean, SpongeDirMid consumes
half the energy of SpongeDirMid-NoBuffer.

• A small provisioning rate can substantially increase
the energy consumption. For example, when executing
radix, SpongeDirSmall consumes nearly three times
more energy than SpongeDirMid due to increased
accesses to deeper levels.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

138

Figure 15: Worst Case Lifetime (in Years) Figure 16: Percentage of Bypassed Memristor
Accesses of SpongeDirMid due to Buffering

 Memristor Lifetime
Based on statistics provided by Yang et al.’s work [40],

we assume the endurance of each SpongeDirectory block
12

6. RELATED WORK

 Multi-level Non-Volatile Memory
is 10 writes and report the lifetime of the most hotspot

SpongeDirectory block in Figure 15. We can make two
major conclusions. First, the provisioning rate does not have
a large effect on worst-case lifetime. The worst-case lifetime
of SpongeDirMid over all benchmarks is over 1 year. Since
the hotspot SpongeDirectory block is unlikely to be the same
block over long runs, we anticipate the overall lifetime of
SpongeDirMid to be at least several years.

Second, request buffering is required for a feasable mem-
ristor implementation. Without buffering (SpongeDirMid-
NoBuffer), in most cases the worst lifetime is below 1 year
(down to 0.003 year in fluidanimate). This is because
buffering is very effective at reducing the access rate of ap-
plications with high accesses to specific blocks when it is
critical, as shown in Figure 16. This shows the percent-
age of bypassed memristor accesses with directory request
buffering. For some benchmarks, a large percentage of direc-
tory requests are bypassed (up to 94.29% for lu); whereas for
some other benchmarks, few directory requests are bypassed
(down to 2.08% for radix). Note that, even though radix
has a small bypass rate, request buffering still increases the
worst case lifetime by 7.6 times. This is because the buffered
requests are exactly the ones visiting hotspot blocks.

 Summary
In summary, experimental results show that SpongeDirMid

is a reasonable design choice. This design choice uses the fol-
lowing configurations for reasons:

• 0.5× provisioning rate provides a balance between
good performance (compared to smaller) and storage
space (compared to larger).

• Buffering of eight most recently finished
requests dramatically increases the lifetime of the
memristors and reduces the amount of time the
memristors are busy (allowing for critical reads to
interrupt long-latency write operations).

• Using energy-optimized memristors substantially
reduces the total energy and area requirements with
negligible reductions in overall performance.

• Using a head shallower item organization policy
reduces overall execution time in some cases (e.g.,
cholesky).

• Using a wider, shallower 5-level memristor
scheme instead of a narrower, 6-level scheme
decreases the overall memristor operation time,
allowing for more critical reads to interrupt long-
latency write operations in some cases (e.g., canneal).

Recently, several projects have focused on architectural
support for multi-level non-volatile memories (multi-level
NVMs) from different angles. Qureshi et al. [25] improved
the access latency of multi-level PCM by using a hardware-
software hybrid scheme, which converts a multi-level PCM
page into two single-level PCM pages when used often.
Several projects [18][19] [24][34] focus on improving the MLC
NVM write performance/energy/endurance by improving
the NVM infrastructure and memory controller. Jiang et al.
[17] also worked on improving the performance of a multi-
level STT-RAM. Saadeldeen et al. [27] use memristors for
branch prediction. Sampson et al. [28] propose to improve
the performance, lifetime or density of multi-level PCM with
an approximate storage technique.

However, to our knowledge, no previous work has used
multi-level NVM to solve the coherence directory scaling
problem.

6.2 Coherence Directory
Many projects have attempted to reduce the storage of

on-chip directories as well as tolerate the variability in
sharers and entries. The SpongeDirectory provides extra
storage at the expense of higher latency and energy, whereas
these schemes reduce storage needs or use those bits more
efficiently. Most of these schemes could be combined with
SpongeDirectory to provide even more area savings.

Building hierarchical directories [33][15][1][20][22] is
another way to reduce directory storage while still preserving
exact sharer information. Martin et al. proposed a
hierarchical solution for the in-cache directory [22] which
embeds coherence information into a hierarchy of inclusive
caches. They show that such a approach is efficient in
terms of area, network traffic and energy. However, such
hierarchical designs create complexity challenges. Another
scheme, Waypoint [20], uses small directory caches on chip,
overflowing extra directory entries to a special part of
cacheable user-space memory. It requires over substantially
higher directory lookup latency when there is an on-chip
directory miss.

The Cuckoo Directory [12] was partly motivated by the
observation that set-level non-uniform accesses to directory
entries could induce an excessive number of invalidations.
This uses a complex hashing technique which achieves
almost the same invalidation rate as a fully associative

sparse directory with only moderate (about 1.5×) over-
provisioning. However, this scheme does not seek to reduce
the sharer storage within a directory entry, thus it is not
scalable in storage for many-core systems.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

139

The SpongeDirectory is inspired by Scalable Coherence
Directory (SCD) [30] which introduced a pointer-vector
hybrid scheme to encode sharer information. SCD“borrows”
blocks from underutilized sets, whereas the SpongeDirectory
uses technology to provide extra space within the same
set. SCD relies on high directory associativity, like Cuckoo
Directory (Zcache [29]). Such schemes are complimentary to
SpongeDirectory and could be used to provide further space
savings.

Compression has been used by storing some information
at the page level[9][26], using dual-grained tracking[4], and
using many granularities[41][11]. Others have used varying
compression schemes [31, 43, 42, 44].

7. CONCLUSIONS
In order to scale up coherence directories for future

extra-scale many-core system, we propose SpongeDirectory,
a sparse directory scheme utilizing multi-level memristor
RAMs. Each SpongeDirectory block is able to dynamically
change its number of levels (thus total storage), according
to current dynamic requirement.

Evaluations on a 256-core extreme-scale processor
show that a SpongeDirectory optimized for low energy
consumption has the performance of a conventional sparse

directory with over 18× the storage space while using 8×
less energy.

Finally, SpongeDirectory uses technology to accommodate
variation in directory demands. This could be combined
with other schemes to reduce overall storage requirements
such as using organization (i.e. SCD) or compression.

8. REFERENCES
[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and

J. Duato, “A two-level directory architecture for
highly scalable cc-numa multiprocessors,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 16,
no. 1, pp. 67–79, 2005.

[2] A. Alameldeen and D. Wood, “Variability in
architectural simulations of multi-threaded
workloads,” in 9th IEEE International Symposium on
High-Performance Computer Architecture, 2003, pp.
7–18.

[3] F. Alibart, L. Gao, B. Hoskins, and D. B. Strukov,
“High-precision tuning of state for memristive devices
by adaptable variation-tolerant algorithm,” CoRR, vol.
abs/1110.1393, 2011.

[4] M. Alisafaee, “Spatiotemporal coherence tracking,” in
45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012, pp. 341–350.

[5] M. Bach, M. Charney, R. Cohn, E. Demikhovsky,
T. Devor, K. Hazelwood, A. Jaleel, C.-K. Luk,

G. Lyons, H. Patil et al., “Analyzing parallel programs
with pin,” IEEE Computer, vol. 43, no. 3, pp. 34–41,
2010.

[6] R. J. Baker, CMOS: circuit design, layout, and
simulation. Wiley-IEEE Press, 2011, vol. 18.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC benchmark suite: Characterization and
architectural implications,” in 17th International
Conference on Parallel Architectures and Compilation
Techniques, 2008, pp. 72–81.

[8] P. Conway, N. Kalyanasundharam, G. Donley,
K. Lepak, and B. Hughes, “Cache hierarchy and
memory subsystem of the AMD Opteron processor,”
IEEE Micro, vol. 30, pp. 16–29, Mar.–Apr. 2010.

[9] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and
J. F. Duato, “Increasing the effectiveness of directory
caches by deactivating coherence for private memory
blocks,” in 38th International Symposium on
Computer Architecture, 2011, pp. 93–104.

[10] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A
circuit-level performance, energy, and area model for
emerging nonvolatile memory.” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 31, no. 7, pp.
994–1007, 2012.

[11] L. Fang, P. Liu, Q. Hu, M. C. Huang, and G. Jiang,
“Building expressive, area-efficient coherence
directories,” in Proceedings of the 22nd international
conference on Parallel architectures and compilation
techniques, 2013, pp. 299–308.

[12] M. Ferdman, P. Lotfi-Kamran, K. Balet, and
B. Falsafi, “Cuckoo directory: A scalable directory for
many-core systems,” in 17th IEEE International
Symposium on High-Performance Computer
Architecture, 2011, pp. 169–180.

[13] L. Gao, F. Merrikh-Bayat, X. Guo, D. B. Strukov, and
K.-T. Cheng, “Digital-to-analog and analog-to-digital
conversion with metal oxide memristors for ultra-low
power computing,” in IEEE/ACM International
Symposium on Nanoscale Architectures, 2013, pp.
19–22.

[14] G. Grohoski, “Niagara-2: A highly threaded
server-on-a-chip,” in Hot Chips 20, 2008.

[15] S.-L. Guo, H.-X. Wang, Y.-B. Xue, C.-M. Li, and
D.-S. Wang, “Hierarchical cache directory for CMP,”
Journal of Computer Science and Technology, vol. 25,
pp. 246–256, Mar. 2010.

[16] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing
memory and traffic requirements for scalable
directory-based cache coherence schemes,” in 19th
International Conference on Parallel Processing, 1990,
pp. 312–321.

[17] L. Jiang, B. Zhao, Y. Zhang, and J. Yang,
“Constructing large and fast multi-level cell stt-mram
based cache for embedded processors,” in Design
Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, 2012, pp. 907–912.

[18] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R.
Childers, “Improving write operations in mlc phase
change memory,” in High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International
Symposium on. IEEE, 2012, pp. 1–10.

International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)
ISSN (Online): 2319-6564 and Website: www.ijesonline.com

140

[19] M. Joshi, W. Zhang, and T. Li, “Mercury: A fast and
energy-efficient multi-level cell based phase change
memory system,” in High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International
Symposium on. IEEE, 2011, pp. 345–356.

[20] J. H. Kelm, M. R. Johnson, S. S. Lumettta, and S. J.
Patel, “WAYPOINT: Scaling coherence to thousand-
core architectures,” in 19th International
Conference on Parallel Architectures and Compilation
Techniques, 2010, pp. 99–110.

[21] J. Li, C.-I. Wu, S. C. Lewis, J. Morrish, T.-Y. Wang,
R. Jordan, T. Maffitt, M. Breitwisch, A. Schrott,
R. Cheek et al., “A novel reconfigurable sensing
scheme for variable level storage in phase change
memory,” in Memory Workshop (IMW), 2011 3rd
IEEE International, 2011, pp. 1–4.

[22] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why
on-chip cache coherence is here to stay,” Commun.
ACM, vol. 55, pp. 78–89, Jul. 2012.

[23] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal,
“Graphite: A distributed parallel simulator for
multicores,” in 16th IEEE International Symposium on
High-Performance Computer Architecture, 2010, pp.
1–12.

[24] D. Niu, Q. Zou, C. Xu, and Y. Xie, “Low power
multi-level-cell resistive memory design with
incomplete data mapping,” in Computer Design
(ICCD), 2013 IEEE 31st International Conference on.
IEEE, 2013, pp. 131–137.

[25] M. K. Qureshi, M. M. Franceschini, L. A.
Lastras-Montaño, and J. P. Karidis, “Morphable
memory system: A robust architecture for exploiting
multi-level phase change memories,” in 37th
International Symposium on Computer Architecture,
2010, pp. 153–162.

[26] A. Ros and S. Kaxiras, “Complexity-effective
multicore coherence,” in 21st International Conference
on Parallel Architectures and Compilation Techniques,
2012, pp. 241–252.

[27] H. Saadeldeen, D. Franklin, G. Long, C. Hill,
A. Browne, D. Strukov, T. Sherwood, and F. T.
Chong, “Memristors for neural branch prediction: a
case study in strict latency and write endurance
challenges,” in Proceedings of the ACM International
Conference on Computing Frontiers, 2013, p. 26.

[28] A. Sampson, J. Nelson, K. Strauss, and L. Ceze,
“Approximate storage in solid-state memories,” in
Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013,
pp. 25–36.

[29] D. Sanchez and C. Kozyrakis, “The ZCache:
Decoupling ways and associativity,” in 43rd Annual
IEEE/ACM International Symposium on
Microarchitecture, 2010, pp. 187–198.

[30] ——, “SCD: A scalable coherence directory with
flexible sharer set encoding,” in 18th IEEE
International Symposium on High-Performance
Computer Architecture, 2012, pp. 1–12.

[31] R. Simoni, “Cache coherence directories for scalable
multiprocessors,” Stanford University, Technical
Report CSL-TR-92-550, Oct. 1992.

[32] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro,
and R. S. Williams, “Sub-nanosecond switching of a
tantalum oxide memristor,” Nanotechnology, vol. 22,
no. 48, 2011.

[33] D. A. Wallach, “PHD: a hierarchical cache coherent
protocol,” Master’s thesis, Massachusetts Institute of
Technology, 1992.

[34] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie,
“Energy-efficient multi-level cell phase-change memory
system with data encoding,” in Computer Design
(ICCD), 2011 IEEE 29th International Conference on,
2011, pp. 175–182.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 programs:
Characterization and methodological considerations,”
in 22nd International Symposium on Computer
Architecture, 1995, pp. 24–36.

[36] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee,
T. J. Cardinali, J. J. Yang, W. Wu, X. Li, W. M.
Tong, D. B. Strukov, and Others, “Memristor-CMOS
Hybrid Integrated Circuits for Reconfigurable Logic,”
Nano letters, vol. 9, no. 10, pp. 3640–3645, 2009.

[37] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design
implications of memristor-based rram cross-point
structures.” in DATE, 2011, pp. 734–739.

[38] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and
Y. Xie, “Understanding the trade-offs in multi-level
cell reram memory design,” in Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE.
IEEE, 2013, pp. 1–6.

[39] J. J. Yang, M. D. Pickett, X. Li, O. A. A., D. R.
Stewart, and R. S. Williams, “Memristive switching
mechanism for metal//oxide//metal nanodevices,”
Nature Nanotechnology, vol. 3, pp. 429–433, 2008.

[40] J. J. Yang, D. B. Strukov, and D. R. Stewart,
“Memristive devices for computing,” Nature
Nanotechnology, vol. 8, pp. 13–24, 2013.

[41] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain
coherence directory,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2013), no.
EPFL-CONF-195669, 2013.

[42] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and
A. Moshovos, “A tagless coherence directory,” in 42nd
Annual IEEE/ACM International Symposium on
Microarchitecture, 2009, pp. 423–434.

[43] H. Zhao, S. Arrvindh, S. Dwarkadas, and
V. Srinivasan, “SPATL: Honey, i shrunk the coherence
directory,” in 20th International Conference on
Parallel Architectures and Compilation Techniques,
2011, pp. 33–44.

[44] H. Zhao, A. Shriraman, and S. Dwarkadas, “SPACE:
Sharing pattern-based directory coherence for
multicore scalability,” in 19th International Conference
on Parallel Architectures and Compilation Techniques,
2010, pp. 135–146.

