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ABSTRACT 
In many-core systems, cache-coherent shared memory 

is essential for programmability. Many directory-based 
methods have been put forth, however due to dynamic, 
non-uniform sharing, they are always energy, 
performance, or storage space inefficient. 

A sparse directory structure that makes use of multi-
level memristory technology is called SpongeDirectory, 
which we introduce. By expanding the number of bits held 
on a single memristor device, SpongeDirectory grows 
directory storage in-place when necessary, exchanging 
latency and energy for storage. We investigate several 
SpongeDirectory setups and discover that the most 
competitive option uses memristors with a provisioning 
rate of 0.5x and is designed to use little energy. With 18 
percent less storage space and 8 percent reduced energy 
usage, this ideal SpongeDirectory setup performs on par 
with a traditional sparse directory. 

 

Categories and Subject Descriptors 
B.3.2  [Memory   Structures]: Design Styles; B.7.1 
[Integrated Circuits]: Types and Design Styles 

 

Keywords 
Sparse Directories; Multi-Level Memristors 

 

1. INTRODUCTION 
As the number of processor cores increases, multi-/many- 

core chips tend to favor directory- over bus-based snooping 
coherence due to bandwidth needs.  Simple  directory 
schemes based on sharer vectors are not scalable, however, 
because storage  increases  super-linearly  with  the  number 
of cores. A  scalable,  efficient directory  scheme  is  needed 
for future extreme-scale many-core system. Many directory 
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schemes (e.g., [14][42][44][20][30]) have been proposed to 
reduce the storage requirements at the cost of  energy, 
latency  or  complexity.    For  example,   duplicate-tag  [14] 
and tagless [42] directories  provide  scalable  performance 
and area, but they are not energy efficient. The recently 
proposed SCD [30] scheme is scalable, but only  if  it  is 
coupled with a complex ZCache architecture[29]. 

Requirements for directory coherence storage are quite 
different among different applications. Some applications 
have a large number of directory entries, but most directory 
entries have very few sharers, whereas others have fewer 
directory entries, with more sharers per entry. Using 
conventional SRAMs, it is quite complex to provide the 
flexibility for both situations while keeping overall storage 
overhead low [11][29]. 

In this paper, we seek to use emerging memristor 
technologies to solve this problem. Memristors offer 
promising characteristics for storage devices—high density, 
non volatile, low-energy electrical switching, CMOS 
compatibility [36], and most  importantly  for  this  work, 
the ability to dynamically trade off read and write latency 
for storage density [3]. This variable-precision storage, 
projected to be up to seven bits[3] in a single  memristor 
bit, is a perfect match to meet the requirements of different 
directory storage requirements in different situations. The 
extra memristors may be used either for more sharers in an 
entry or for more entries in a set, allowing for flexible needs 
within and across applications. 

This paper makes the following contributions: 

• Provide a model projected from empirical data for 
latency and energy requirements for memristors. 

• Introduce an encoding scheme that requires only one 
memristor bit to store the number of levels being used. 

• Design and evaluate a coherence directory with 
memristors that, with the optimized configuration, 
saves 18x storage, results in negligible degeneration 

on overall system performance, and consumes 8× less 
energy than a conventional directory. 

The rest of the paper is organized  as follows.  We first give 
a background on memristors and cache coherence directory 
storage schemes in Section 2. Section 3 presents our Sponge 
Directory scheme. We then present our methodology and 
results in Sections 4 and 5. We present a more thorough 
related work section in Section 6, followed by our conclusions 
in Section 7. 

mailto:permissions@acm.org
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Figure 1: Multi-level memristor cell, and the step-wise manner of a multi-level memristor read. The same 
resistance can be read as different numbers of bits, and the most significant bits are read first. 

 

2. BACKGROUND 
The SpongeDirectory  is  built  on  two  bodies  of  work 

– future multi-level memristor technologies and  on-chip 
cache coherence directories. Here, we present the relevant 
information in those areas. 

 

 Multi-Level Memristor Storage vs Latency 
Memristors [39][40] are in the family of resistive memories. 

Others include Phase Change Memories (PCM) and Spin- 
Transfer Torque RAM (STTRAM). Memristors,  when used 
as a direct replacement for SRAM, are projected to be 
significantly more dense than conventional SRAM. Because 
memristors are analog devices, they can be used for analog 
computations or, depending on the precision of the storage, 
storing multiple digital bits in one cell [3]. We propose to 
exploit this latter characteristic (at the expense of energy 
and latency). 

A memristor cell [39] is a device whose  resistance  can 
be  changed  in  a  wide  range.    Holding  a  voltage  above 
a specific threshold for enough time (i.e., a write pulse) 
changes the resistance of the memristor cell. An Analog- 
to-Digital Circuit (ADC) reads the resistance as a digital 
value. Depending on the ADC setting, the same resistance of 
a memristor cell could be interpreted as a different number 
of bits [13][38]. Figure 1 shows that the same resistance 
can be interpreted as b’1 when the ADC is using one-level 
accuracy, and as b’10 and b’101, respectively, when the ADC 
is using two-level and three-level accuracy. Alibart et al. [3] 
recently showed that a single memristor cell can be used to 
store up to seven bits of data. 

The higher precision of the memristor operations comes 
at a cost in latency and energy. Here we describe in detail 
the characteristics of multi-level memristor operations: 

 
 Multi-level Memristor Reads 

As the number of bits being stored in a single memristor 
increases, the ADC must distinguish between more values, 
and the range of resistive values mapping to a single digital 
value decreases. Therefore, more precise read operations 
require longer latency. 

Another interesting and important characteristic of multi- 
level memristor read operation is its asymmetry to different 
bits. Because of this, we will refer to the different bits stored 
in a single memristor as being stored in different levels. 
Because the most significant bit requires much less precision 
to be read out than the least significant bit, we refer to the 
most significant bit as being the shallowest bit, or in the 
shallowest level, and the least significant bit is the deepest 
bit, or in the deepest level. 

In this paper, we assume a successive approximation ADC 
[6] which allows us to read out multi-level memristor data 
in a step-wise manner. If ReadLatency(n) is the time 
required to read the nth most significant bit, a three-level 
read operation will be complete at ReadLatency(3). As 
Figure   1 shows, however, the data in the first level (i.e., 
the most significant bit or shallowest level) can be read out 
by ReadLatency(1), and the data in the second level can be 
used by ReadLatency(2). 

The important result is that if we only need to read out 
the most significant bit of a multi-level memristor, we pay 
the latency and energy of a less precise memristor. 

 

 Multi-level Memristor Writes 

In order to write very precise resistance values, multi-level 
memristors use an iterative write method [3]. That is, a 
multi-level write is composed of multiple iterations, each 
iteration consisting of a multi-level read followed by a write 
pulse. 

As we will see in Section 4,  a  multi-level write can have 
very high latency (up to hundreds or even thousands of 
nanoseconds). Fortunately, the operation can be interrupted 
between iterations to service more critical operations (e.g. a 
read). 

In conclusion, multi-level memristor operations trade 
operation latency and energy for storage density. Using 
multiple levels  incurs  high  latencies  and  energies,  but 
we are able to mitigate these effects with careful data 
organization and scheduling. The asymmetry in  read 
latency for different levels allows us to access some data 
at low latency and energy. Finally, while the write latency 
appears unacceptably high, we can suspend the write while 
performing more time-critical operations. 

 

 On-chip Coherence Directories 
There are several  baseline  directory  architectures  used 

for on-chip coherence, such as  sparse  directory,  duplicate 
tag directory, and in-cache directory. A  duplicate  tag 
directory has been shown  not to  be energy  scalable  (since 
its associativity is linear  with  number  of  cores).  An  in- 
cache directory requires  a  special  inclusive  shared  Last 
Level Cache hierarchy. Therefore, among  the  possible 
baseline directory architectures, the sparse directory [16] is 
general  purpose  and  requires  the  least  energy.    Recently,  
a number of proposals (e.g., [12][30][9][4][11]) work on 
improving the scalability of sparse directories, each with its 
own trade-off among complexity, storage and performance. 
Our scalable design provides a new design point in these 
trade-offs. Specifically, with the  help  of  emerging  multi- 
level memristors, our technique has the lowest storage 
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requirement among all the proposal.s In addition, it as a 
gentle degradation in performance for rare cases. 

Figure 2 provides a logical view of on-chip sparse directory 
coherence, consisting of a logical uniform directory module 
and multiple processor cores along with their private caches. 
To avoid directory and network hot-spotting, the directory 
module is often divided into multiple directory slices. Each 
directory slice contains multiple directory entries, typically 
organized in a set-associative manner, just like caches. Each 
directory entry usually contains at least the following fields: 
address tag (address of corresponding memory block), state 
(three states in a conventional MESI protocol) and sharers 
(which cores’ caches currently contain the memory block). 

If a processor core asks for a memory block which does 
not exist on its private caches, it will issue a coherence 
request (e.g. GETX in Figure 2) to the sparse directory. The 
sparse directory then performs corresponding actions (e.g., 

 
 
 
 
 
 
 
 
 
 
 
 

Address Tag: 
Addr0 

State: 
Shared 

Sharers: 
Cores 1, N‐2, N‐1 

 

Figure 2: An example of a sparse directory scheme 
invalidating all the cached copies of the memory block). The 
disadvantage of the original sparse directory is its storage 
requirement, since it must hold all information perfectly. 
Depending on who is sharing what, there are two sources of 
storage inefficiency: 

• Storing sharer information in an entry: In a sharer-
vector form, the storage of such information is linear 
with the number of cores and thus not scalable. 

 
• Slice-level   and   set-level    non-uniformity:    In 

theory the number of valid directory entries should 
never exceed the number of private cache entries. 
However, due to the set-level and slice-level non- 
uniformity of sparse directory, the sparse directory 

often needs to over-provision (usually 2× of the 
number of private cache entries [8]) the directory 
entries. The way  to  solve  such a  problem  usually 
lies in increasing the actual associativity of the sparse 
directory (e.g., Cuckoo directory [12]). 

In this paper we analyze a conventional 256-core sparse di- 
rectory (i.e., the ConvDir described in Section 4), to shed 
light on designing low-cost and efficient many-core coher- 
ence directory using multi-level memristors. This analysis is 
analyzes both spatial and temporal behavior. 

 

 Directory Design: Timing 

In order to exploit the fact that multi-level memristor 
reads are asymmetric, we need to analyze the timing 
of traditional conventional sparse directories to determine 
which items are both commonly accessed and on the critical 
path, and thus should be in the shallowest levels of the 
memristors. Figure 3 presents detailed flow graphs of 
GETX/GETS operations in a sparse directory. Figure 4 
shows the number of directory requests with respect to L1 
cache and L2 cache requests. Using this information, we 
make the following set of observations that will guide our 
design: 

• For a typical MESI-based directory coherence system, 
there are four types directory requests: Exclusive Read 
(i.e., GETX), Shared Read (i.e.,GETS), Exclusive 
Write-back (i.e.,PUTX) and Shared Write-back (i.e., 
PUTS). While GETX and GETS are on the critical 
path of the execution, PUTX and PUTS are not. 
Therefore, we should optimize the latency of GETX 
and GETS operations. 

used  in  a  multi-/many-core  processor  to  track  private 
cache coherence information. A sparse directory uses set- 
associative cache-like structures and is is distributed into 

slices (M slices in this figure). 

 
• From Figure 3, the read operations (in  red) are  on 

the critical path of the directory requests, but the 
write operations (in blue) are not on the critical path. 
Therefore, low read latency is more important than 
write latency. 

• From Figure 3, for all reads, the sparse directory needs 
to read the tag and state information of all entries 
in corresponding directory set. On a  hit,  it  usually 
(cases 1 and 3) needs to read only one sharer from the 
hit directory’s entry. From Figure 4, Case 2 happens 
relatively rarely. Therefore, low read latency of tags, 
states and one sharer is more important than read 
latency of additional sharers 

• From Figure 4, the number of directory requests are on 
average over 1144× and 24.9× less than the number of 
L1 cache requests and L2 cache requests, respectively. 
According to Amdahl’s law, a moderate degradation 
of directory performance is unlikely to affect overall 
system performance. 

 

 Directory Design: Spatial 

For each  evaluated  benchmark,  we  take  a  snapshot 
when  the  total  number of  sharers  in  the directory  entries 
is the largest. Figure 5  is  a  histogram  of  how  many 
directory  entries  have  each  number  of  sharers.  We  can 
see that benchmarks vary widely in their maximum sharing 
requirements. 

• Some benchmarks (e.g., radix) have a large number of 
directory entries, but almost all the directory entries 
are owned by only one sharer. These benchmarks 
require more directory entries, but seldom require more 
sharer storage for each directory entry. 

• Some other benchmarks (e.g., barnes and raytrace) 
have significantly fewer directory entries, but some 
of the directory entries have many sharers. These 
benchmarks require fewer directory  entries,  but some 
of the directories require more storage for sharers. 

Therefore, our proposed directory scheme should be flexible 
enough to handle both situations - when many directory 
entries are required and when many sharers are required for 
some directory entries. 
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Figure 3: Behaviors of GETX and GETS requests in a conventional sparse directory using MESI protocol showing reads (red) 
and writes (blue). Goal: reduce latency for common operations on critical path. We see that: (1) Only reads are on the 
critical path. (2) All reads require state and tag, and most require one sharer. (3) Relatively few operations require reading 
multiple sharers. 

 

Figure 4: Number and type of memory accesses 
normalized to total directory  accesses.  Directory 
accesses are relatively infrequent, therefore latency tolerant. 

Figure 5: Number of directory entries with X sharers, 
normalized to the number of cache blocks showing 
variance in need for entries (radix) and sharers (raytrace). 

 

3. SPONGEDIRECTORY 
In this section, based on the analysis of both multi-level 

memristors and sparse directories in Section 2, we propose 
the detailed architecture of SpongeDirectory. Without the 
loss of generality, our proposed architecture is for a 256-core 
system (as described in Section 4). 

The storage of each SpongeDirectory slice, like a normal 
sparse directory slice, is an N-way set-associative memory. 
Each set has N blocks in it. The difference is that the 
memory is made of multi-level memristor RAMs, therefore 
each block can  be configured individually with  a  number 
of levels. We call each level of a SpongeDirectory block a 
SpongeDirectory item. 

 

 Identifying the Level of a Block 
The SpongeDirectory must be able to identify the number 

of items in each block. Intuitively, we need to store item 
count information of all SpongeDirectory blocks into a small 
peripheral RAM. However, this will complicate the design of 
SpongeDirectory. Here we propose a low-cost but effective 
mechanism, a usage bit, that encodes the number of items 
stored in a single memristor bit whose value is read only to 
the deepest filled item. 

Each SpongeDirectory block has one usage bit. If the 
correspondent item is the deepest valid item of the block 
(e.g., the Level 3 item in Figure 1), its usage bit is 0; 
otherwise, it is 1. Therefore, A multi-level memristor read 
can stop once it reads a usage bit with value 0. 

 
 

 SpongeDirectory Entry Formats 
A directory entry refers to the directory information of a 

cacheline block. There are two types of items — head items 
and body items. A head item is either invalid or contains the 
tag, state, and at least one sharer. A new directory entry 
needs only one head item, since it only needs its tag, address, 
and the one sharer that brought it in. As more cores share 
the cacheline, body items are added to store the additional 
sharers. 

We use two different directory entry formats for storing 
sharer information. First, the sharer pointer scheme stores 
information only for sharers, allowing the number of items 
to grow as the number of sharers grows, but requiring 8 
bits per sharer. Second, the sharer vector scheme uses only 
1 bit per sharer, but requires space for all cores (not just 
those sharing it). This is efficient for many sharers. Similar 
to prior work[30], each entry may be configured as either 

GETX 
Request 

Check if there is a hit in sparse 
directory. 

[Read the state and tag of all 
the directory entries in 

corresponding set] 
Critical 

GETS 
Request 

Check if there is a hit in sparse 
directory. 

[Read the state and tag of all 
the directory entries in 

corresponding set] 
Critical 

Path 

Invalidation 
Requests 

Hit (in Sha red state) 

Send invalidation requests to 
all the sharer cores. 

[Read all sharers from the hit 
directory entry] 

Invalidation 
Responses 

 
GETX 

Response 

Send GETX response with data 
to the requestor core. 

Wait for the invalidation 
responses from the sharer 

core. 

Case 3: A GETX/S request, 
hit with Exclusive/Modified state 

GETX/S 
Request 

Check if there is a hit in sparse 
directory. 

[Read the state and tag of all 
the directory entries in 

corresponding set] 
Critical 

Path Hit (in Exclusive/ Modified state) 

Flush 
Request 

 
Flush 

Response 

 
GETX/S 

Response 
 
 

Confirmation 
Response 

Finished 

Wait for the confirmation 
Message from the requestor 

core. 

Wait for the flush response 
from the owner core. 

Send flush request to the 
owner core. 

[Read the only one sharer 
(i.e., the owner) from the hit 

directory entry] 

Update the directory entry. 
[Add one sharer (requestor) to the 

sharer‐list of the directory entry, change 
the tag if needed, and remove the 

previous sharer if needed] 

Send GETX/S response with 
data to the requestor core. 

Path 
 
 
 

Forward 

GETS Request 

Hit (in Sha red state) 

Forward the request to a 
sharer core. 

[Read one sharer from the hit 
directory entry] 

Confirmation 
Response 

Wait for the confirmation 
Message from the requestor 

core. 

Case 4: A GETX/S request, 
miss 

GETX/S 
Request 

Check if there is a hit in sparse 
directory. 

[Read the state and tag of all 
the directory entries in 

corresponding set] 
Critical 

Path 

GETX/S 
Response 

Mi ss 

Send GETX/S response with 
data (got from off‐chip 

memory) to the requestor 
core. 

  Confirmation  
Response 

Finished 

Insert the directory entry. 
[Write the whole directory 
entry to an empty block] 

Wait for the confirmation 
message from the requestor 

core. 



 
 
International Journal of Engineering Sciences Paradigms and Researches (Volume 47, Issue: Special Issue of January 2018)  
ISSN (Online): 2319-6564 and Website: www.ijesonline.com 

132  

Usage bit 
(1 bit) 

Item type (2 bits) 
[Pointer Body, 

code 10] 

Head item (3 bits) 
[current value: 001] 

Seven sharer pointers 
(8 * 7 = 56 bits) 

Number of valid 
pointers (3 bits) 

 
 

Precision Level 1 (001) 
Invalid Item 

 
 
 

 
Precision Level 1 (001) 

Pointer Head Item 
 
 

 
Precision Level 3 (011) 

Pointer Body Item 
 

 
Precision Level 5 (101) 

Pointer Body Item 
 
 
 

 
Precision Level 1 (001) 

Vector Head Item 
 

 
Precision Level 2 (010) 

Vector Body Item 

Four Item types: Invalid (code 00), Pointer Head (code 01), Pointer Body (code 10) and Vector (code 11) 
 

Usage bit 
(1 bit) 

Item type (2 bits) 
[Invalid, 
code 00] 

Unused 
(54 bits) 

(a) An invalid directory item 

 

Usage bit 
(1 bit) 

Item type (2 bits) 
[Pointer Head, 

code 01] 

State 
(3 bits) 

Number of valid 
pointers (3 bits) 

Address tag 
(40 bits) 

Two sharer pointers 
(8*2 = 16 bits) 

 

 
Usage bit 

(1 bit) 

Item type (2 bits) 
[Pointer Body, 

code 10] 

Head item (3 bits) 
[current value: 001] 

Number of valid 
pointers (3 bits) 

Seven sharer pointers 
(8 * 7 = 56 bits) 

(b) Directory items which form a sharer pointer directory entry 

 

Usage bit 
(1 bit) 

Item type (2 bits) 
[Vector, code 11] 

State 
(3 bits) 

Unused 
(3 bits) 

Address tag 
(40 bits) 

One sharer pointer 
(8 bits) 

Unused 
(8 bits) 

 

 
Precision Level 5 (101) 

Vector Body Item 
 

(c) Directory items which form a bit vector directory entry 
 

Figure 6: The entry formats of SpongeDirectory 

 

scheme to obtain the advantage of both sharer pointer and 
sharer vector schemes. 

Figure 6 shows the different formats and how they are 
utilized with different scenarios. 

• Invalid Items. Figure 6(a) shows an invalid item. This 
is only used when the block contains no items. 

• Sharer  Pointer  Head  and  Body  Items.    Figure 6(b) 
shows an example of a multi-item directory entry using 
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the sharer pointer format. The pointer head item 
contains the address tag, state and two sharer pointers. 
The two pointer body items contain all other sharer 
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Invalid Item 
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pointers. Because multiple directory entries can be 
mapped to the same block, each body item has a 
pointer to its head item. 

• Sharer Vector Head and Body Items: Figure 6(c) shows 
an example of a directory entry using the sharer vector 
format. A sharer vector directory entry has a fixed 
storage requirement for sharer information (in our 
case, 256 bits, requiring four items). With its head 
item, a sharer vector directory entry requires all five 
items of a block. To ensure fast directory responses, a 
sharer vector head item preserves a sharer pointer. 

Figure 7 shows how items would be stored in the same 
block. We add a few restrictions to reduce read latency: 

• A single block may contain several directory entries in 
sharer pointer format. 

• One block can hold up to five items (out of a possible 
seven [3]). 

• Head items are stored in the shallowest levels for fast 
completions of cases 1, 3, and 4 in Figure 3. 

We also add restrictions to simplify the design: 

• All items for the same directory entry must reside in 
the same block to simplify accesses. 

• A directory entry in sharer vector format uses the 
entire block. 

Figure 7: A snapshot of a 4-way SpongeDirectory set. Items 
with the same color belong to the same directory entry. 

 

 Minimizing Write Energy 
As will be shown in Section 4.2, multi-level memristor 

writes require significantly more energy than other 
operations. In addition, it is often the case that just a few 
bits of an item,  and therefore block,  need to be changed. 
In order to save energy consumption, SpongeDirectory only 
writes the memristor bits of a block that need to change. 

• Inserting  or   removing   items   that  cross  the 
threshold of the number sharers in an item in sharer 
pointer format requires the entire block to be written. 

• Adding  a  sharer  within  an  item  in   sharer 
pointer format requires only modification of the 
target sharer pointer and the pointer count field.. 

• Removing a sharer within an  item  in  sharer 
pointer format may leave a hole, so a sharer pointer 
may need to be moved. Therefore, the maximum is 
two sharer pointers and the pointer count field.. 

• Adding a sharer in sharer vector format requires 
modification of only a single bit. 

• Removing a sharer in sharer vector format modifies 
only a single bit unless the removed sharer is also in 
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the sharer pointer field of the head item. In this case, 
we also need to modify the sharer pointer field. 

• Changing directory entry format  requires  the 
entire block to be written (see below). 

 Changing Directory Entry Format 
Every directory entry is in sharer pointer  format (with 

one head item and no body items) when inserted into the 
directory, and sharer pointer items are added and removed 
as needed. When the number of sharers surpasses a 
threshold, SpongeDirectory will upgrade a sharer pointer 
directory entry into sharer vector format. All other directory 
entries sharing the same block are evicted, sharer pointers 
are translated to vector locations, and sharer vector items 
are written to the upgraded directory entry. 

Ideally, as the number of sharers falls below another 
threshold, a downgrade operation should occur to switch 
the sharer vector directory entry back into sharer pointer 
format.    The directory could toggle across the threshold, 
so we do not downgrade at this time. When  a  GETX 
occurs, the resulting directory entry has only one sharer (the 
requester), so compressing the entry to a single item rather 
than the entire block is worthwhile, so we only downgrade a 
sharer vector directory entry at this time. 

 Buffering Recently Finished Requests 
There are still two challenges for SpongeDirectory scheme 

in some applications: limited write durability and long write 
latency. As we will show later, if a very small number of 
blocks are written many times, as in fluidanimate, this will 
hurt the lifetime of that block, as well as suffer delays due 
to the long write latencies. Therefore, we propose a buffer 
that holds the most recently finished directory requests to 
capture subsequent operations to those entries. 

 

4. METHODOLOGY 
In this section, we describe the two main aspects to the 

experiments. First, we describe the different configurations 
we evaluated. Second, we describe the simulations and 
models we used to obtain our numerical results. 

 Directory Configurations 
Our baseline is a conventional sparse directory architec- 

ture.   In addition,  we calculate the storage requirements 
of the SCD architecture. For the SpongeDirectory config- 
urations, we have several configurations that vary the size, 
memristor type, organization, and buffering in order to eval- 
uate the effectiveness of our design decisions. Table 2 sum- 
marizes the storage requirements of the three basic sizes. 
All of the variations only change one attribute as compared 
with SpongeDirMid, so we describe only the difference be- 
tween SpongeDirMid and that configuration. 

 

• ConvDir is a conventional sparse directory architec- 
ture using a sharer-vector scheme with a 2× provision- 
ing rate. 

• SpongeDirMid uses energy-optimized memristors 
with a 0.5× provisioning rate and an 8-entry buffer 
of the most recently completed requests. 

• SpongeDirSmall uses a 0.25× provisioning rate. 

• SpongeDirLarge uses a 1× provisioning rate. 
• SpongeDirMid-NoBuffer has no buffer of the most 

recently completed requests. 

• SpongeDirMid-FastMemristor uses latency opti- 
mized memristors. 

• SpongeDirMid-6Levels uses a narrower format 
requiring 57 bits per block instead of 65 bits — each 
Pointer Head Item has one sharer pointer instead of 
two. This will utilize deeper levels more often. 

• SpongeDirMid-SimplePolicy is SpongeDirMid but 
does not take advantage of the organization of items 
within a block. Although head items are stored in 
the shallowest levels, this reads the entire entry before 
processing the request. 

 

 Models 
For each configuration, we calculate the storage 

requirements as well as the read latency, write latency, and 
energy. We developed models for memristors projected from 
recent experimental data. We used these values as inputs to 
our simulation infrastructure. 

 

Simulation. 
We implement our simulation platform with the multi- 

threaded GRAPHITE simulator [23], based on Pin [5]. As 
described in Table 1, we simulate a 256-tile cache coherent 

many-core system which is distributed in a 16 × 16 mesh 
network-on-chip. Each tile has split 32KB L1 I/D-caches, a 
private 512KB L2 cache, and a sparse directory slice. 

To take into account the execution time variability of 
parallel benchmarks [2], we run each simulation multiple 
times and report the average and standard deviation of each 
collection of measurements. We evaluate our design using 
nine SPLASH-2 benchmarks [35] (barnes, cholesky, fft, lu, 
ocean, radix, raytrace, volrend and water) and six PARSEC 
benchmarks [7] (blackscholes, bodytrack, canneal, dedup, 
ferret and fluidanimate). As shown in Figures 4 & 5, these 
benchmarks exhibit a wide variety of directory behaviors. 

To reduce simulation time, Graphite [23] uses relaxed 
coordination among the threads, and the developers show 
that the  simulation  inaccuracy  caused  by  the  approach 
is acceptable. However, this means that the requests of 
different threads sometimes arrive to a directory slice not 
in a time order, making it impossible to model the queuing 
delay of different operations. As a result, we first present 
the execution time without considering the queuing delay. 
We then separately present the memristor operation time 
in the busiest directory slice to show when queuing delay is 
likely to considerably prolong the execution time. 

 

Storage. 
Table 2 shows the storage requirements of the directory 

schemes, which  is  affected  by two  parameters:  (1)storage 
of each directory block ; (2)provisioning rate of the sparse 
directory scheme, defined as the total number of directory 
blocks divided by the total number of cache blocks in all 
private caches. 

For the first parameter, due to their multiple storage 
formats, both SCD and SpongeDirectory require smaller 
directory blocks than a conventional sparse directory. 

The provisioning rate  of a conventional sparse directory 

is 2×. Because SCD mimics a  much larger  associativity 
with its Zcache-like infrastructure, it only needs a 

provisioning rate of 1×.  Each SpongeDirectory block  can 
be configured to hold multiple directory entries, further 
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Table 1: Simulation Parameters 
 

Frequency 1GHz 
Processor in-order, x86-64 ISA, IPC equals to 1 except on memory accesses, 64-byte cacheline size 
L1 Caches private split 32KB I/D-caches per processor, 4-way, parallel access, 2-cycle latency, 0.82pJ tag 

lookup, 88.71pJ data access. 
L2 Caches private, 512KB per processor, 8-way, sequential access, 11-cycle latency, 4.62pJ tag access, 

74.70pJ data access. 
Coherence Protocol MESI protocol, split request-response, with forward, sequential consistency. 
Directories Critical directory access latency = data path latency (5 cycles) + critical RAM operation latency 

+ network/memory latency. 
ConvDir: RAM read/write latency: 1 cycle (1ns); buffering 8 most recent requests. 
SpongeDirectories:     by default, buffering 8 most recent requests, using energy-optimized 
memristors, head item shallower policy and 5-level memristors, a sharer pointer format directory 
entry having at most three items. 

Network 16 × 16 MESH network, 4 cycles per hop. 1 process/hierarchy per tile. 
Memories 350 cycle latency. 

 

Table 2: Compared directory architectures. SpongeDirectory formats in Figure 6. 
 

 Directory type RAM 
type 

Block 
organization 

Prov. 
rate 

Directory RAM storage per tile 
(caches have 624.375 KB RAM per tile) 

SpongeDirSmall SpongeDirectory memristor 4-way, 
512 sets 

0.25× 65 bits per block (5 levels/bit) 
->∼16KB (2.56% cache) 

SpongeDirMid 
(default) 

SpongeDirectory memristor 4-way, 
1024 sets 

0.5× 65 bits per block (5 levels/bit) 
->∼32KB (5.13% cache) 

SpongeDirLarge SpongeDirectory memristor 4-way, 
2048 sets 

1.0× 65 bits per block (5 levels/bit) 
->∼64KB (10.25% cache) 

SpongeDirMid 
-6Levels 

SpongeDirectory memristor 4-way, 
1024 sets 

0.5× 57 bits per block (6 levels/bit) 
->∼28KB (4.48% cache) 

ConvDir Conventional 
Sparse Directory 

SRAM 4-way, 
4096 sets 

2.0× 307 bits / block: 3-bit state, 40-bit tag, 8-bit 
sharer pointer, 256-bit vector 
-> 614 KB per tile (98.3% of cache). 

SCD SCD [30] SRAM Zcache [29], 
4 ways, 
2048 sets 

1.0× 71 bits per block: 3-bit state, 40-bit tag, 
2-bit type, 26-bit sharer info field 
-> 71 KB per tile (11.37% of cache). 

 

Table 3: Energy and Latencies of the modeled directory storage. 
 

Architecture Size Storage type 1-level read latency 1-level read energy Area 
latency- 
optimized 

energy- 
optimized 

latency- 
optimized 

energy- 
optimized 

latency- 
optimized 

energy- 
optimized 

SpongeDirSmall 16KB memristor 1.651ns 4.763ns 41.464pJ 3.172pJ 
2 

11000.6um 
2 

3563.8um 
SpongeDirMid 32KB memristor 1.698ns 5.463ns 41.775pJ 4.008pJ 

2 
11464.8um 

2 
6363.0um 

SpongeDirLarge 64KB memristor 1.809ns 6.739ns 42.397pJ 4.167pJ 
2 

12411.4um 
2 

8011.9um 
SpongeDirMid 
-6Levels 

28KB memristor 1.670ns 5.439ns 36.582pJ 3.341pJ 10404.7um2 5671.0um2 

ConvDir 614KB SRAM-based 
4-way cache 

< 1.000ns tag: 11.58pJ 
data: 74.70pJ 

2 
968655um 

 

  
 

 
Figure 8: The latency and energy consumption of 32KB multi-level memristor RAMs used in SpongeDirMid. 
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ReadLatency(n) = ⌈ReadLatency(1) ∗ ExpoBasen−1 

 
⌉ (1) 

level operations on 32KB memristor RAMs (with Latency- 
Optimized or Energy-Optimized configurations). 

W riteLatency(n) = ⌈(ReadLatency(n) + W ritePulseLat) ∗ n⌉ 
(2) 

ReadEnergy(n) ≈ ReadEnergy(1) ∗ ExpoBasen−1 (3) 

W riteEnergy(n) ≈ ReadEnergy(n) ∗ n (4) 
 
 
 

 
reducing its provisioning rate. We evaluated three sizes of 

SpongeDirectories — 0.25×, 0.5×, and 1×. 
In conclusion, SpongeDirectory has smallest because it 

utilizes both a compact directory block format as well as 
a low provisioning rate. This results in SpongeDirMid (our 
default SpongeDirectory configuration) requiring 1/18th of 
the storage of a conventional sparse directory and less than 
half of SCD. 

 

Memristor and SRAM-Cache Modeling. 
For the detailed modeling of memristors, we use nvsim 

[10] to obtain the read latency and energy of single-level 
memristor RAMs under at 22nm process. Cacti 6.5 is used 
to obtain energy characteristics of SRAM structures. Prior 
work [37] demonstrated that in designing the memristor- 
based RAM, there is a trade off between latency, energy 
and area. We explore two design points: Latency-Optimized 
and Energy-Optimized. 

As Table 3 shows, memristors in the Latency-Optimized 
configuration are almost twice as fast as the Energy- 
Optimized configuration, but they consume almost 10x the 
energy and require more  area.  In addition,  we see  that 
for the Energy-Optimized configuration, all SpongeDirectory 
configurations consume substantially less energy than a 
conventional directory when accessing the lowest level. 

Previous work on multi-level PCM reading technology [21] 
shows that the read latency increases exponentially with 
the number of bits stored in the PCM cell.   For a multi- 
level memristor, we model the same read latency trend— 
Equation 1 shows how the latency is computed in a multi- 
level read. ReadLatency(n) refers to the latency of an n- 
level read. ExpoBase refers to the exponential base of the 
modeled multi-level memristor technique. 

As  mentioned  in   Section   2.1.2,   a   multi-level   write 
is composed of multiple iterations, with each iteration 
consisting of a multi-level read followed by a write pulse. 
Alibart et al. [3] show that, for a multi-level write, the 
number of iterations grows linearly with the number of write 
levels. Equation 2 reflects this curve. ReadLatency(n) refers 
to the latency of an n-level read, and WritePulseLatency 
refers to the latency of a write pulse. 

A write pulse consumes trivial energy compared to a read 
pulse [32], so we make an approximation that the energy 
consumption of a memristor operation equals the energy 
consumption of its read sub-operations. Since the power 
consumption of the read operation is constant (because the 
read voltage is constant), we obtain Equations 3 & 4 for 
energy consumption of multi-level read/write operations. 

For ExpoBase,  we  use  the  empirical  number  2.1,  which 
is derived from Alibart et al.’s work [3]. Memristor  write 
pulses can be less than one nanosecond [32], therefore we 

assign  W ritePulseLatency = 1ns in  Equation  2.   Figure 
8  shows  the  latency  and  energy  consumption  of  multi- 

5. RESULTS 
In this section, we present the evaluation of SpongeDi- 

rectory in terms of eviction rate, critical directory access 
latency, overall performance, directory energy consumption 
and lifetime. For clarity, in each graph, we remove any vari- 
ations whose results are nearly identical to SpongeDirMid. 

 Eviction Rate 
Eviction rate is the most straight-forward metric for 

evaluating the effectiveness of a sparse directory scheme. 
Given a particular configuration of the directory, evictions 
occur when there is no place in the desired set to place a 
new entry. 

We can see from Figure 9 that, even with a provisioning 

rate of only 0.25×–1×, SpongeDirectory has a low eviction 
rate (on average all less than 1%). Evictions occur in 
SpongeDirectory for three reasons: format upgrades, non- 
uniform accesses, and lack of capacity. 

When SpongeDirectory upgrades directory entries from 
the sharer pointer format to the sharer vector format, all 
other entries in the same block are evicted. These evictions 
could be reinstated at the cost of extra complexity for 
upgrades. However, given the fact that this occurs rarely 
in our experiments, there is little justification to introduce 
this complication. 

Directory entries are sometimes non-uniformly distributed 
[12], leading to evictions in  the  hotspot  directory  sets. 
The SpongeDirectory gains much more associativity by 
increasing the number of levels it uses (at the cost of latency 
and energy consumption). For example, SpongeDirSmall 
can exhibit a lower eviction rate than ConvDir  (canneal 
and ferret). As we  will  see  in  Section  5.3,  this 
advantage sometimes helps SpongeDirectory achieve higher 
performance than a much larger conventional directory. 

While extra levels provides more tolerance in a particular 
set than the conventional directory, the overall capacity 
of SpongeDirSmall is less than the conventional directory. 

0.25× * 5 levels = 1.25×, which is still substantially smaller 
than conventional directory’s 2×.  Thus, the conventional 
directory  can  hold  many  more  entries,  as  long  as  they 
are  not  concentrated  in  certain  sets.  This  is  illustrated 
in radix, where SpongeDirSmall experiences an eviction 
rate of 7.98% because of insufficient capacity in the hotspot 
SpongeDirectory slice. 

 Critical Read Operation Latency 
As discussed in Section 2.2, the performance of a directory 

scheme is dependent on critical reads. In Figure 11, we 
present the latency of critical read accesses of different 
directory architectures. Compared to a conventional sparse 
directory, SpongeDirectories require  many  more  cycles 
(on average 7.56 cycles for  SpongeDirSmall,  4.44  cycles 
for SpongeDirMid and 4.39 cycles for SpongeDirLarge, 
compared with 0.58 cycles for ConvDir ) to perform critical 
read accesses. 

This long latency is due to two factors of the memristor 
technology. First, as an emerging technology, memristor 
devices still have much longer access latency compared 
with mature  SRAM  devices  (Table  3).  Second,  multi- 
level memristor operations require more latency. Even with 
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Figure 9: Directory Eviction Rate Figure 10: SpongeDirectory Blocks with Different 
Items, Normalized to Number of Cache Blocks 

 

Figure 11: Average Latency of Critical Read Operations (cycles) 

 
 

Figure 12: Normalized Execution Time (without considering directory request queuing) 

 
careful design to reduce accesses to deeper levels, the lower 
the provisioning rate, the more often these deeper levels are 
used. 

As shown in Figure 11, design choices such as provisioning 
rate, buffering, which memristors we use, and the 
organization policies, affect the critical read latency. Figure 
10 shows the most direct reason for rising latency - increased 
accesses to deeper levels. 

Provisioning  Rate  affects   evictions   and   how   often 
deep levels are acessed. Two benchmarks, radix and 
dedup, exhibit long critical latency (52.2 and 16.3 cycles 
respectively) for SpongeDirSmall due to increased accesses 
to deep levels. 
Request Buffering helps reduce the  critical  latency 
because part of the requests are bypassed from accessing 
memristors.       On   average,   the   critical   read   latency 
of SpongeDirMid-NoBuffer is 2.71 cycles longer than 
SpongeDirMid. 

Memristor Design can choose to optimize  for  either 
latency or energy. Optimizing for latency (SpongeDirMid- 

FastMemristor ) is 2× faster (on average 1.47 cycles versus 
4.44 cycles) than optimizing for energy (SpongeDirMid ). 

Item  Organization  Policies   were   chosen   to   increase 
the number  of  accesses  to  lower  levels.  Not  utilizing 
this optimization (SpongeDirMid-SimplePolicy ) can  result 
in much longer critical read latency—for cholesky, 18.79 
cycles compared with 4.81 cycles. 

Narrower format also increases the access to deeper levels, 
as shown by SpongeDirMid-6Levels. While it did not greatly 

affect the critical read latency, it has a larger effect on the 
time when the memristor is busy (see Section 5.3). 

 

 Overall Performance 
The overall performance of different schemes is determined 

by two factors — critical latency in the RAM discussed in 
Section 5.2 and the queuing time to wait for previous direc- 
tory operations to finish. As discussed in Section 4, Graphite 
cannot model the second phenomena. Therefore, we first 
show the overall execution time not taking into account di- 
rectory queuing time. We then show the percentage time the 
busiest slice was being used and discuss the effect of queuing 
time on overall performance. 

 

Execution Time without Queueing Time. 
Figure 12 provides a comparison of overall performance 

due to read latency between the SpongeDirectory and 
conventional sparse directory. This represents two 
competing effects - higher evictions in the conventional 
sparse directory versus higher read latencies in the 
SpongeDirectory. 

Overall, SpongeDirectory is competitive despite its lower 
provisioning, more compact format (resulting in 18x fewer 
bits) and longer memristor access latency. 

Closer  inspection  of  the  eviction  rates  and   levels 
used  within  SpongeDirectory  explain  the   variance   in 
the  results.  Benchmark  dedup has  a  much  lower 
eviction rate in the SpongeDirectory than the conventional 
directory, and, although higher levels  are  quite  often 
used, all SpongeDirectory configurations experience a 10% 
performance gain. 
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Figure 13: Percentage time busiest SpongeDirectory slice is serving requests 

 

      

 

Figure 14: Percentage of on-chip memory dynamic energy 

 
We observe two cases of obvious slowdown of SpongeDi- 

rectories, and we look for the detailed reasons: 

• cholesky on SpongeDirMid-SimplePolicy : cholesky 
needs much longer critical read latency in the SpongeD- 
irMid-SimplePolicy than all other directory architec- 
tures. This indicates that careful item organization of 
the SpongeDirectory is indeed necessary. 

• radix on  SpongeDirSmall :   radix suffers  from  both 
a high eviction rate and long  critical  read  latency 
due to accesses in deep levels. Therefore, we need 

more capacity than the 0.25× provisioning rate of 
SpongeDirSmall to avoid such pathologically bad 
behavior. 

 

Considering Queueing Time. 
With the help of suspendable multi-level memristor 

writes, long-latency non-critical memristor accesses typically 
do not slow down critical directory operations. However, 
this is based on the assumption that there is enough time 
when the RAM is not performing critical reads to fit in non-
critical, long-latency writes. If the memristor RAM is very 
busy, the critical requests might be blocked because the 
limited directory processing buffers are all taken by awaiting 
non-critical requests. 

Figure 13 shows the percentage of memristor access time 
in the busiest SpongeDirectory slice.   For SpongeDirMid, 
the average value is 8.37% (up to 35.1% when running 
canneal),    which   is   acceptable. However, several 
other SpongeDirectory design choices sometimes cause 
unacceptably long memristor operation time : 

• No request buffering leads to memristor operation 
time  in  the  busiest  slice  which  is   longer   than 
total exection time for fluidanimate, volrend, and 
canneal. This would result in a slowdown of at least 
1.5x-5.3x. 

• Using six levels instead of five levels leads to 
memristor operation time in the busiest slice which is 
almost same with total exection time for canneal and 
volrend, likely slowing down those two applications. 

• Small provisioning rate (SpongeDirSmall ) leads to 
high occupancy in the busiest slice  of  radix - 61.45% 
of overall execution time. 

 

When we consider the overall execution time and time 
the busiest slice was being utilized, the reasons for our 
default parameters are clear. Although SpongeDirMid- 
FastMemristor individual operations are considerably faster 
than with  SpongeDirMid,  this advantage  is  not reflected 
in terms of overall execution, nor an unacceptably large 
percentage time the the busiest directory slice was being 
used. Therefore, we do not need to use latency-optimized 
memristors to maintain competitive performance. In 
addition, it is clear that buffering is critical. SpingeDirMid 
provides the best trade-off between a low eviction rate, small 
storage, and good performance. Finally, a wider format that 
uses only 5 levels is worth the small extra area. 

 Dynamic Directory Energy Consumption 
Figure 14 shows the breakdown of dynamic energy 

consumption of different directory schemes. We see that, 
on average, all of the SpongeDirectories configurations with 
energy-optimized memristors consume less energy than a 
conventional directory. SpongeDirMid consumes about half 
the energy of a conventional directory. Even SpongeDirMid- 
FastMemristor, which consumes by far the most energy, 
consumes only slightly more energy than a conventional 
directory. 

If we compare the these configurations, we see that: 

• It is clear that the performance benefit from latency- 
optimized memristors is far outweighted by the energy 
benefit of energy-optimized menristors. 

• Request buffering further reduces the energy consump- 
tion. When executing ocean, SpongeDirMid consumes 
half the energy of SpongeDirMid-NoBuffer. 

• A small provisioning rate can substantially increase 
the energy consumption. For example, when executing 
radix, SpongeDirSmall consumes nearly three times 
more energy than SpongeDirMid due to increased 
accesses to deeper levels. 
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Figure 15: Worst Case Lifetime (in Years) Figure 16: Percentage of  Bypassed  Memristor 
Accesses of SpongeDirMid due to Buffering 

 

 Memristor Lifetime 
Based on statistics provided by Yang et al.’s work [40], 

we assume the endurance of each SpongeDirectory block 
12 

6. RELATED WORK 
 

 Multi-level Non-Volatile Memory 
is 10 writes and report the lifetime of the most hotspot 

SpongeDirectory block in Figure 15. We can make two 
major conclusions.  First,  the provisioning rate does not have 
a large effect on worst-case lifetime. The worst-case lifetime 
of SpongeDirMid over all benchmarks is over 1 year. Since 
the hotspot SpongeDirectory block is unlikely to be the same 
block over long runs, we anticipate the overall lifetime of 
SpongeDirMid to be at least several years. 

Second, request buffering is required for a feasable mem- 
ristor implementation. Without buffering (SpongeDirMid- 
NoBuffer ), in most cases the worst lifetime is below 1 year 
(down to 0.003 year in fluidanimate). This is because 
buffering is very effective at reducing the access rate of ap- 
plications with high accesses to specific blocks when it is 
critical,  as shown in Figure 16.   This shows the percent- 
age of bypassed memristor accesses with directory request 
buffering. For some benchmarks, a large percentage of direc- 
tory requests are bypassed (up to 94.29% for lu); whereas for 
some other benchmarks, few directory requests are bypassed 
(down to 2.08% for radix). Note that, even though radix 
has a small bypass rate, request buffering still increases the 
worst case lifetime by 7.6 times. This is because the buffered 
requests are exactly the ones visiting hotspot blocks. 

 Summary 
In summary, experimental results show that SpongeDirMid 

is a reasonable design choice. This design choice uses the fol- 
lowing configurations for reasons: 

• 0.5× provisioning rate provides a balance between 
good performance (compared to smaller) and storage 
space (compared to larger). 

• Buffering   of   eight   most   recently   finished 
requests dramatically increases the lifetime of the 
memristors and reduces the amount of time the 
memristors are busy (allowing for critical reads to 
interrupt long-latency write operations). 

• Using energy-optimized memristors substantially 
reduces the total energy and area requirements with 
negligible reductions in overall performance. 

• Using a head shallower item organization policy 
reduces overall execution time in some cases (e.g., 
cholesky). 

• Using a wider,  shallower  5-level  memristor 
scheme instead of a narrower, 6-level scheme 
decreases the overall memristor operation time, 
allowing for more critical reads to interrupt long- 
latency write operations in some cases (e.g., canneal). 

Recently, several projects have focused on architectural 
support for multi-level non-volatile memories (multi-level 
NVMs) from different angles. Qureshi et al. [25] improved 
the access latency of multi-level PCM by using a hardware- 
software hybrid scheme, which converts a multi-level PCM 
page into two single-level PCM pages when used often. 
Several projects [18][19] [24][34] focus on improving the MLC 
NVM write performance/energy/endurance by improving 
the NVM infrastructure and memory controller. Jiang et al. 
[17] also worked on improving the performance of a multi- 
level STT-RAM. Saadeldeen et al. [27] use memristors for 
branch prediction. Sampson et al. [28] propose to improve 
the performance, lifetime or density of multi-level PCM with 
an approximate storage technique. 

However, to our knowledge, no previous work has used 
multi-level NVM to solve the coherence directory scaling 
problem. 

 

6.2  Coherence Directory 
Many projects have attempted to reduce the storage of 

on-chip directories as well as tolerate the variability in 
sharers and entries. The SpongeDirectory provides extra 
storage at the expense of higher latency and energy, whereas 
these schemes reduce storage needs or use those bits more 
efficiently. Most of these schemes could be combined with 
SpongeDirectory to provide even more area savings. 

Building hierarchical directories [33][15][1][20][22] is 
another way to reduce directory storage while still preserving 
exact sharer information. Martin et al. proposed a 
hierarchical solution for the in-cache directory [22] which 
embeds coherence information into a hierarchy of inclusive 
caches. They show that such a approach is efficient  in 
terms of area, network traffic and energy. However, such 
hierarchical designs create complexity challenges. Another 
scheme, Waypoint [20], uses small directory caches on chip, 
overflowing extra directory entries to a special part of 
cacheable user-space memory. It requires over substantially 
higher directory lookup latency when there is an on-chip 
directory miss. 

The Cuckoo Directory [12] was partly motivated by the 
observation that set-level non-uniform accesses to directory 
entries could induce an excessive number of invalidations. 
This uses a complex hashing technique which achieves 
almost the same invalidation rate as a fully associative 

sparse directory with only moderate (about 1.5×) over- 
provisioning. However, this scheme does not seek to reduce 
the sharer storage within a directory entry, thus it is not 
scalable in storage for many-core systems. 
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The SpongeDirectory is inspired by Scalable Coherence 
Directory (SCD) [30] which introduced a pointer-vector 
hybrid scheme to encode sharer information. SCD“borrows” 
blocks from underutilized sets, whereas the SpongeDirectory 
uses technology to provide extra space  within the same 
set. SCD relies on high directory associativity, like Cuckoo 
Directory (Zcache [29]). Such schemes are complimentary to 
SpongeDirectory and could be used to provide further space 
savings. 

Compression has been used by storing some information 
at the page level[9][26], using dual-grained tracking[4], and 
using many granularities[41][11]. Others have used varying 
compression schemes [31, 43, 42, 44]. 

 

7. CONCLUSIONS 
In order to scale up coherence directories for future 

extra-scale many-core system, we  propose SpongeDirectory, 
a sparse directory scheme utilizing multi-level memristor 
RAMs. Each SpongeDirectory block is able to dynamically 
change its number of levels (thus total storage), according 
to current dynamic requirement. 

Evaluations  on  a  256-core   extreme-scale   processor 
show that a SpongeDirectory optimized for low energy 
consumption has the performance of a conventional sparse 

directory with over 18× the storage space while  using 8× 
less energy. 

Finally, SpongeDirectory uses technology to accommodate 
variation in directory demands. This could be combined 
with other schemes to reduce overall storage requirements 
such as using organization (i.e. SCD) or compression. 
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